【題目】已知函數(shù)在處取得極值.
(1)求常數(shù)k的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值;
(3)設(shè),且, 恒成立,求的取值范圍.
【答案】(1);(2)極大值為極小值為;(3).
【解析】試題分析:(1)因?yàn)楹瘮?shù)兩個(gè)極值點(diǎn)已知,令,把0和4代入求出k即可.
(2)利用函數(shù)的導(dǎo)數(shù)確定函數(shù)的單調(diào)區(qū)間, 大于零和小于零分別求出遞增和遞減區(qū)間即可,把函數(shù)導(dǎo)數(shù)為0的x值代到f(x)中,通過表格,判斷極大、極小值即可.
(3)要使命題成立,只需,由(2)得: 和其中較小的即為g(x)的最小值,列出不等關(guān)系即可求得c的取值范圍.
試題解析:
(1),由于在處取得極值,
∴
可求得
(2)由(1)可知, ,
的變化情況如下表:
x | 0 | ||||
+ | 0 | - | 0 | + | |
極大值 | 極小值 |
∴當(dāng)為增函數(shù), 為減函數(shù);
∴極大值為極小值為
(3) 要使命題, 恒成立,只需使,即即可.只需
由(2)得在單增,在單減.
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三()班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題.
(1)求全班人數(shù)及分?jǐn)?shù)在之間的頻數(shù),并估計(jì)該班的平均分?jǐn)?shù);
(2)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:
天數(shù) | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/噸 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?
(Ⅱ)你認(rèn)為應(yīng)該用平均數(shù)和中位數(shù)中的哪一個(gè)數(shù)來描述該公司每天的用水量?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}和{bn}是兩個(gè)等差數(shù)列,記cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs這s個(gè)數(shù)中最大的數(shù).
(Ⅰ)若an=n,bn=2n-1,求c1,c2,c3的值,并證明{cn}是等差數(shù)列;
(Ⅱ)證明:或者對(duì)任意正數(shù)M,存在正整數(shù)m,當(dāng)n≥m時(shí), >M;或者存在正整數(shù)m,使得cm,cm+1,cm+2,…是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,拋物線與橢圓有相同的焦點(diǎn),且橢圓過點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若橢圓的右頂點(diǎn)為,直線交橢圓于兩點(diǎn)(與點(diǎn)不重合),且滿足,若點(diǎn)為中點(diǎn),求直線斜率的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表.
(1)求的值,并作出這些數(shù)據(jù)的頻率分布直方圖;
(2)現(xiàn)從第3、4、5組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”,經(jīng)過比賽后從這6人中選拔2人組成該校代表隊(duì),求這2人來自不同組別的概率;
(3)假設(shè)每組數(shù)據(jù)組間是平均分布的,若該校希望使15%的學(xué)生的一周課外閱讀時(shí)間不低于(小時(shí))的時(shí)間,作為評(píng)選該!罢n外閱讀能手”的依據(jù),試估計(jì)該值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+ )=2 .
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值及此時(shí)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后拋擲兩枚骰子,設(shè)出現(xiàn)的點(diǎn)數(shù)之和是12,11,10的概率依次是P1,P2,P3,則( )
(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是以為公差的等差數(shù)列,數(shù)列的前項(xiàng)和為,滿足, ,則不可能是( )
A. -1 B. 0
C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com