【題目】【2018山西晉城市高三上學(xué)期一!凯h(huán)境問題是當(dāng)今世界共同關(guān)注的問題,我國環(huán)保總局根據(jù)空氣污染指數(shù)濃度,制定了空氣質(zhì)量標(biāo)準(zhǔn):
空氣污染指數(shù) | ||||||
空氣質(zhì)量等級 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
某市政府為了打造美麗城市,節(jié)能減排,從2010年開始考察了連續(xù)六年11月份的空氣污染指數(shù),繪制了頻率分布直方圖,經(jīng)過分析研究,決定從2016年11月1日起在空氣質(zhì)量重度污染和嚴(yán)重污染的日子對機(jī)動車輛限號出行,即車牌尾號為單號的車輛單號出行,車牌尾號為雙號的車輛雙號出行(尾號是字母的,前13個視為單號,后13個視為雙號),王先生有一輛車,若11月份被限行的概率為0.05.
(I)求頻率分布直方圖中的值(寫出推理過程,直接寫出答案不得分);
(II)若按分層抽樣的方法,從空氣質(zhì)量良好與中度污染的天氣中抽取6天,再從這6天中隨機(jī)抽取2天,求至少有一天空氣質(zhì)量中度污染的概率;
(III)該市環(huán)保局為了調(diào)查汽車尾氣排放對空氣質(zhì)量的影響,對限行兩年來的11月份共60天的空氣質(zhì)量進(jìn)行統(tǒng)計,其結(jié)果如下表:
根據(jù)限行前6年180天與限行后60天的數(shù)據(jù),計算并填寫以下列聯(lián)表,并回答是否有的把握認(rèn)為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).
參考數(shù)據(jù):
參考公式:,其中.
【答案】(I)0.003;(II);(III)至少有的把握認(rèn)為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).
【解析】試題分析:
(1)由題意可得空氣重度污染和嚴(yán)重污染的概率應(yīng)為,然后根據(jù)頻率分布直方圖中所有小長方形的面積和為1可求得.(2)由題意得空氣質(zhì)量良好與中度污染的天氣的概率之比為,故根據(jù)分層抽樣抽取6天,則空氣質(zhì)量良好天氣被抽取4天,空氣中度污染天氣被抽取2天,然后列舉出所有的可能結(jié)果,根據(jù)古典概型概率公式求解.(3)由條件得到列聯(lián)表,由此求得,然后結(jié)合所給的參考數(shù)據(jù)得到結(jié)論.
試題解析:
(1)因為限行分單雙號,王先生的車被限行的概率為0.05,
所以空氣重度污染和嚴(yán)重污染的概率應(yīng)為,
由頻率分布直方圖可知:
,
解得.
(2)因為空氣質(zhì)量良好與中度污染的天氣的概率之比為,
按分層抽樣從中抽取6天,則空氣質(zhì)量良好天氣被抽取4天,記做,
空氣中度污染天氣被抽取2天,記做,
從這6天中隨機(jī)抽取2天,所包含的基本事件有: ,共15個.
記事件為“至少有一天空氣質(zhì)量中度污染”,則事件所包含的基本事件有: ,共9個,
故.
即至少有一天空氣質(zhì)量中度污染的概率為.
(3)列聯(lián)表如下:
由表中數(shù)據(jù)可得 ,
所以至少有的把握認(rèn)為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是拋物線y2=﹣8x上一點,設(shè)P到此拋物線準(zhǔn)線的距離是d1,到直線x+y﹣10=0的距離是d2,則dl+d2的最小值是__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究晝夜溫差大小與某疾病的患病人數(shù)之間的關(guān)系,經(jīng)查詢得到今年上半年每月15號的晝夜溫差情況與患者的人數(shù)如表:
日期 | 1月15日 | 2月15日 | 3月15日 | 4月15日 | 5月15日 | 6月15日 |
晝夜溫差 | 10 | 11 | 10 | 10 | 9 | 7 |
患者人數(shù)個 | 21 | 26 | 20 | 18 | 16 | 8 |
研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問中所得線性回歸方程是否理想?
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若是函數(shù)的極值點,求的值及函數(shù)的極值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且對任意的恒有,已知當(dāng)時,則①函數(shù)的周期是;②在上是增函數(shù),在上是減函數(shù);③的最大值是,最小值是;④當(dāng)時, ,其中所有真命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為D的函數(shù),若存在區(qū)間,使得同時滿足,①在上是單調(diào)函數(shù),②當(dāng)的定義域為時,的值域也為,則稱區(qū)間為該函數(shù)的一個“和諧區(qū)間”
(1)求出函數(shù)的所有“和諧區(qū)間”;
(2)函數(shù)是否存在“和諧區(qū)間”?若存在,求出實數(shù)a,b的值;若不存在,請說明理由
(3)已知定義在上的函數(shù)有“和諧區(qū)間”,求正整數(shù)k取最小值時實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com