已知曲線C的方程為:4x2+y2-8xcosθ-4ysin2θ-sin22θ=0.
(1)判斷這是什么曲線?θ變化時它的形狀、大小是否發(fā)生變化?
(2)當(dāng)θ取一切實數(shù)時,求曲線C的中心的軌跡.
考點:軌跡方程,橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)4x2+y2-8xcosθ-4ysin2θ-sin22θ=0可化為4(x-cosθ)2+(y-2sin2θ)2=4,即可得出結(jié)論;
(2)令x=cosθ,y=2sin2θ,則消去θ可得x2+
y2
4
=1,可得曲線C的中心的軌跡.
解答: 解:(1)4x2+y2-8xcosθ-4ysin2θ-sin22θ=0可化為4(x-cosθ)2+(y-2sin2θ)2=4,
∴它表示橢圓,θ變化時,它的形狀、大小不發(fā)生變化;
(2)令x=cosθ,y=2sin2θ,則消去θ可得x2+
y2
4
=1
∴曲線C的中心的軌跡是橢圓.
點評:本題考查橢圓方程,考查學(xué)生分析解決問題的能力,正確化簡方程是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a5+a6=a12,a1+a7=10,則a2+a4+a6+…+a100的值等于(  )
A、1300B、1350
C、2650D、2600

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機變量X的分布列如下表
X12345
P 
1
10
 
3
10
a 
1
10
 
1
10
(1)求a;
(2)求P(X≥4)和P(2≤X<5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1(-1,0)、F2(1,0),過F1作與x軸不重合的直線l交橢圓于A、B兩點.
(Ⅰ)若△ABF2為正三角形,求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若橢圓的離心率滿足0<e<
5
-1
2
,O為坐標(biāo)原點,求證OA2+OB2<AB2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù)且f(1)=1,若a、b∈[-1,1],a+b≠0,有
f(a)+f(b)
a+b
>0成立.
(1)判斷函數(shù)f(x)在[-1,1]上是增函數(shù)還是減函數(shù),并加以證明.
(2)解不等式f(x+
1
2
)>f(2x-
1
2
).
(3)若f(x)≤m2-2am+1對所有x∈[-1,1]、a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,直線l的參數(shù)方程為
x=tcosα
y=1+tsinα
(t為參數(shù),0≤α<π).
(Ⅰ)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(Ⅱ)若直線l經(jīng)過點(1,0),求直線l被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)當(dāng)a=-
1
4
,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[1,+∞),f(x)≤x-1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求點P(1,2)關(guān)于直線x-y-1=0的對稱點Q的坐標(biāo);
(2)求直線x+3y-1=0關(guān)于x-y+1=0的對稱直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=2,AC=3,A=60°,則cosB=
 

查看答案和解析>>

同步練習(xí)冊答案