已知二次函數(shù)f(x)=x2-16x+q+3:
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t.

解:(1)∵二次函數(shù)f(x)=x2-16x+q+3的對稱軸是x=8
∴函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞減
∴要使函數(shù)f(x)在區(qū)間[-1,1]上存在零點,須滿足f(-1)•f(1)≤0.
即(1+16+q+3)•(1-16+q+3)≤0
解得-20≤q≤12.
所以使函數(shù)f(x)在區(qū)間[-1,1]上存在零點的實數(shù)q的取值范圍是[-20,12];
(2)當時,即0≤t≤6時,f(x)的值域為:[f(8),f(t)],
即[q-61,t2-16t+q+3].
∴t2-16t+q+3-(q-61)=t2-16t+64=12-t.
∴t2-15t+52=0,∴
經(jīng)檢驗不合題意,舍去.
時,即6≤t<8時,f(x)的值域為:[f(8),f(10)],
即[q-61,q-57].
∴q-57-(q-61)=4=12-t.
∴t=8
經(jīng)檢驗t=8不合題意,舍去.
當t≥8時,f(x)的值域為:[f(t),f(10)],
即[t2-16t+q+3,q-57]
∴q-57-(t2-16t+q+3)=-t2+16t-60=12-t
∴t2-17t+72=0,∴t=8或t=9.
經(jīng)檢驗t=8或t=9滿足題意,
所以存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t.
分析:(1)求出二次函數(shù)的對稱軸,得到函數(shù)f(x)在[-1,1]上為單調(diào)函數(shù),要使函數(shù)在區(qū)間[-1,1]上存在零點,則f(-1)•f(1)≤0,由此可解q的取值范圍;
(2)分t<8,最大值是f(t);t<8,最大值是f(10);8≤t<10三種情況進行討論,對于每一種情況,由區(qū)間長度是12-t求出t的值,驗證范圍后即可得到答案.
點評:本題考查了二次函數(shù)的性質(zhì),考查了分類討論的數(shù)學(xué)思想,訓(xùn)練了利用函數(shù)單調(diào)性求函數(shù)的最值,正確的分類是解答該題的關(guān)鍵,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案