16.(1)試計(jì)算下列各式,(只需寫出結(jié)果,不需要計(jì)算過(guò)程)
sin245°+sin2105°+sin2165°=$\frac{3}{2}$
sin230°+sin290°+sin2150°=$\frac{3}{2}$
sin215°+sin275°+sin2135°$\frac{3}{2}$
(2)通過(guò)觀察上述各式的計(jì)算規(guī)律,請(qǐng)寫出一般性的命題,并給出的證明
(參考公式:sin2α=cos2α-sin2α=2cos2α-1=1-2sin2α)

分析 分析已知條件中,我們可以發(fā)現(xiàn)等式左邊參加累加的三個(gè)均為正弦的平方,且三個(gè)角組成一個(gè)以60°為公差的等差數(shù)列,右邊是常數(shù),由此不難得到結(jié)論.

解答 解:(1)由已知,
sin245°+sin2105°+sin2165°=$\frac{3}{2}$,
sin230°+sin290°+sin2150°=$\frac{3}{2}$,
sin215°+sin275°+sin2135°=$\frac{3}{2}$,
(2)歸納推理的一般性的命題為:sin2α+sin2(α+60°)+sin2(α+120°)=$\frac{3}{2}$,
證明如下:
左邊=$\frac{1}{2}$[1-cos(2α-120)]+$\frac{1}{2}$(1-cos2α)+$\frac{1}{2}$[1-cos(2α+120)]
=$\frac{3}{2}$-$\frac{1}{2}$[cos(2α-120°)+cos2α+cos(2α+120°)]
=$\frac{3}{2}$=右邊.
∴結(jié)論正確

點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想),(3)論證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,經(jīng)過(guò)點(diǎn)A(0,3)的直線與橢圓交于P,Q兩點(diǎn).
(Ⅰ)若|PO|=|PA|,求點(diǎn)P的坐標(biāo);
(Ⅱ)若S△OAP=S△OPQ,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$離心率e=$\frac{\sqrt{2}}{2}$,短軸長(zhǎng)為2$\sqrt{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,橢圓左頂點(diǎn)為A,過(guò)原點(diǎn)O的直線(與坐標(biāo)軸不重合)與橢圓C交于P,Q兩點(diǎn),直線PA,QA分別與y軸交于M,N兩點(diǎn).試問(wèn)以MN為直徑的圓是否經(jīng)過(guò)定點(diǎn)(與直線PQ的斜率無(wú)關(guān))?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若tanα=2,求$\frac{2sin2α}{1+cos2α}$•$\frac{co{s}^{2}α}{cos2α}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若關(guān)于x的不等式不等式|x2-5|<4成立時(shí),-x2+4x+a2-4>0成立,則a的取值范圍是(-∞,-5)∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.四棱錐S-ABCD的底面ABCD是正方形,AC與BD相交于點(diǎn)O,且SO⊥平面ABCD,若四棱錐S-ABCD的體積為12,底面對(duì)角線的長(zhǎng)為2$\sqrt{8}$,則側(cè)面與底面所成的二面角等于60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知不等式 $1+\frac{1}{4}<\frac{3}{2},1+\frac{1}{4}+\frac{1}{9}<\frac{5}{3},1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}<\frac{7}{4},…$,照此規(guī)律,總結(jié)出第 n(n∈N*)個(gè)不等式為1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}+…+\frac{1}{(n+1)^{2}}$<$\frac{2n+1}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)a,b為互不相等的正實(shí)數(shù),求證:4(a2+b2)>(a+b)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知在△ABC中,a=5,c=7,sinA=$\frac{5\sqrt{3}}{14}$,則∠C=60°或120°.

查看答案和解析>>

同步練習(xí)冊(cè)答案