設(shè)函數(shù)f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值為m.若m≥k對任意的b、c恒成立,則k的最大值是


  1. A.
    1
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:函數(shù)f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值為f(-1),f(1),f(b)三個中最大的一個值,然后根據(jù)b、c任意,然后取b=0,c=與b=0,c=進(jìn)行判定,假設(shè)f(b)=|b2+c|=m,f(-1)≤m,f(1)≤m,從而求出m的范圍,即可求出所求.
解答:函數(shù)f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值為f(-1),f(1),f(b)三個中最大的一個值
而f(-1)=|c-2b-1|,f(1)=|c+2b-1|,f(b)=|b2+c|
∵m≥k對任意的b、c恒成立,
∴當(dāng)b=0,c=時也成立即f(x)=|-x2+|,x∈[-1,1]的最大值為
故可排除選項(xiàng)A
當(dāng)b=0,c=時也成立即f(x)=|-x2+|,x∈[-1,1]的最大值為
假設(shè)f(b)=|b2+c|=m,則c=m-b2或c=-m-b2
f(-1)=|c-2b-1|≤m,f(1)=|c+2b-1|≤m,
∴(b+1)2≤2m,(b-1)2≤2m,將兩式相加得:2b2+2≤4m
即m≥,而m≥k,k的最大值是
故選B.
點(diǎn)評:本題主要考查了函數(shù)恒成立問題,以及二次函數(shù)的性質(zhì)和排除法的運(yùn)用,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+3x2+6x+4,a,b都是實(shí)數(shù),且f(a)=14,f(b)=-14,則a+b的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足Sn=
1
2
(1-an).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)函數(shù)f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求Tn=
1
b1
+
1
b2
+
1
b3
+
1
bn
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1  (x>0)
-1(x<0)
,則不等式xf(x)+x≤4的解集是
(-∞,0)∪(0,2]
(-∞,0)∪(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-1,當(dāng)自變量x由1變到1.1時,函數(shù)的平均變化率是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(  )

查看答案和解析>>

同步練習(xí)冊答案