精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=sin2xcos2x2sinx cosxxR).

(Ⅰ)求f()的值.

(Ⅱ)求f(x)的最小正周期及單調遞增區(qū)間.

【答案】2.(最小正周期為π,單調遞增區(qū)間[kπ+,kπ+]kZ

【解析】試題分析:Ⅰ)把集合B化簡后,由AB=,AB=R,借助于數軸列方程組可解a的值;(Ⅱ)把pq的充分條件轉化為集合A和集合B之間的關系,運用兩集合端點值之間的關系列不等式組求解a的取值范圍.

試題解析解:函數f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin2x+

f=2sin+=2sin=2,

ω=2,故T=π,

即f(x)的最小正周期為π,

由2x+∈[﹣+2kπ,+2kπ]k∈Z得:

x∈[﹣+kπ+kπ],k∈Z

故f(x)的單調遞增區(qū)間為[﹣+kπ,+kπ]或寫成[kπ+,kπ+]k∈Z

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】.(本小題滿分14分)已知等比數列的公比為,首項為,其前項的和為.數列的前項的和為, 數列的前項的和為

,求的通項公式;為奇數時,比較的大; 為偶數時,若,問是否存在常數(與n無關),使得等式恒成立,若存在,求出的值;若不存在,說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

已知函數,且曲線在點處的切線與直線平行.

(1)求的值;

(2)判斷函數的單調性;

(3)求證:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把正方形AA1B1B以邊AA1所在直線為軸旋轉900到正方形AA1C1C,其中D,E,F分別為B1A,C1C,BC的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1F⊥平面AEF;
(3)求二面角A﹣EB1﹣F的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別是a、b、c,已知

求角A的大小;

(Ⅱ)若b=3,ABC的面積為 ,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了制作廣告牌,需在如圖所示的鐵片上切割出一個直角梯形,已知鐵片由兩部分組成,半徑為1的半圓及等腰直角三角形,其中,為裁剪出面積盡可能大的梯形鐵片(不計損耗),將點放在弧上,點放在斜邊上,且,設.

(1)求梯形鐵片的面積關于的函數關系式;

2)試確定的值,使得梯形鐵片的面積最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖 ,在四棱錐中, , , 為棱的中點, .

(1)證明: 平面;

(2)若二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國移動通信公司早前推出全球通移動電話資費個性化套餐”,具體方案如下:

方案代號

基本月租(元)

免費時間(分鐘)

超過免費時間的話費(元/分鐘)

1

30

48

060

2

98

170

060

3

168

330

050

4

268

600

045

5

388

1000

040

6

568

1700

035

7

788

2588

030

I)寫出套餐中方案的月話費(元)與月通話量(分鐘)(月通話量是指一個月內每次通話用時之和)的函數關系式;

II)學生甲選用方案,學生乙選用方案,某月甲乙兩人的電話資費相同,通話量也相同,求該月學生甲的電話資費;

III)某用戶的月通話量平均為320分鐘,則在表中所列出的七種方案中,選擇哪種方案更合算,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.

查看答案和解析>>

同步練習冊答案