在空間直角坐標(biāo)系中A,B兩點(diǎn)的坐標(biāo)為A(2,3,1),B(-1,-2,-4),則A.B點(diǎn)之間的距離是( 。
A、59
B、
59
C、7
D、8
考點(diǎn):空間兩點(diǎn)間的距離公式
專(zhuān)題:空間向量及應(yīng)用
分析:利用空間中兩點(diǎn)間距離公式求解.
解答: 解:∵A(2,3,1),B(-1,-2,-4),
∴A.B點(diǎn)之間的距離|AB|=
(2+1)2+(3+2)2+(1+4)2
=
59

故選:B.
點(diǎn)評(píng):本題考查兩瞇間的距離的求法,是基礎(chǔ)題,解題時(shí)要注意空間中兩點(diǎn)間距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=2 
1
3
,b=3 
1
3
,c=log32 
1
2
,則(  )
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明某命題時(shí),對(duì)結(jié)論:“自然數(shù)a,b,c都是偶數(shù)”,正確的反設(shè)為( 。
A、a,b,c中至少有一個(gè)是奇數(shù)
B、a,b,c中至多有一個(gè)是奇數(shù)
C、a,b,c都是奇數(shù)
D、a,b,c中恰有一個(gè)是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列的前四項(xiàng)為1×2,2×3,3×4,4×5,則下列可以做為該數(shù)列通項(xiàng)的是( 。
A、2n
B、n+1
C、n2+n
D、n2-n
E、n2+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于實(shí)數(shù)x,“x>6”是“x>10”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a1+a2+a3=2,a2+a3+a4=4,a5+a6+a7=( 。
A、64B、32C、16D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,1)為圓心,以
2
為半徑的圓在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以ox軸為極軸的極坐標(biāo)系中對(duì)應(yīng)的極坐標(biāo)方程為( 。
A、ρ=2
2
cos(θ-
π
4
B、ρ=2
2
sin(θ-
π
4
C、ρ=2
2
cos(θ-1)
D、ρ=2
2
sin(θ-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是正方形,PD⊥底面ABCD,點(diǎn)E在PC上,F(xiàn),G分別是PD和AD的中點(diǎn).
(Ⅰ)證明:AP∥平面EFG
(Ⅱ)證明:BC⊥DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)拋物線y2=16x的焦點(diǎn),且與雙曲線x2-y2=2有相同的焦點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓E的長(zhǎng)軸上,點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)|
MP
|最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案