3.已知2a>2b>1,則下列不等關(guān)系式中一定正確的是(  )
A.sinα>sinbB.log2a<log2bC.a3<b3D.($\frac{1}{2}$)a<($\frac{1}{2}$)b

分析 利用指數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵2a>2b>1,則a>b>0.
∴$(\frac{1}{2})^{a}<(\frac{1}{2})^$,
故選:D.

點評 本題考查了指數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a∈R,“a>1”是“方程x2+2ax+y2+1=0的曲線是圓”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若an=2n-1+1(n∈N*),則33是數(shù)列{an}的第6項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法正確的是(  )
A.0∉NB.$\sqrt{2}$∈QC.π∉RD.$\sqrt{4}$∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x+1)=2x-1,則f(x)的解析式為(  )
A.f(x)=3-2xB.f(x)=2x-3C.f(x)=3x-2D.f(x)=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在棱長為2的正方體中,
(1)求異面直線BD與B1C所成的角
(2)求證:平面ACB1⊥平面B1D1DB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=|x+$\frac{1}{x}|-|x-\frac{1}{x}$|-k(k為常數(shù))有四個零點,則這四個零點之和為( 。
A.-2kB.0C.2kD.4k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn.?dāng)?shù)列{an}中的項按下列規(guī)律過程構(gòu)成無窮多個行列式:|$\begin{array}{l}{a_1}{a_2}{a_3}\\{a_4}{a_5}{a_6}\\{a_7}{a_8}{a_9}\end{array}|,|\begin{array}{l}{a_7}{a_8}{a_9}\\{a_{10}}{a_{11}}{a_{12}}\\{a_{13}}{a_{14}}{a_{15}}\end{array}|,|\begin{array}{l}{a_{13}}{a_{14}}{a_{15}}\\{a_{16}}{a_{17}}{a_{18}}\\{a_{19}}{a_{20}}{a_{21}}\end{array}|…,記{A_i}為{a_i}$(i=1,2,3…)的代數(shù)余子式.
(1)若Sn=2n2+n,求A1,A4,A6,A9;
(2)若數(shù)列{an}為等差數(shù)列,A3=-27$,\;{a_1}=5\;,\;{b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前n項和Tn;
(3)數(shù)列{an}為公差不為0的等差數(shù)列,Ai=λ(Ai-k+Ai+k),其中i,i-k,i+k,k∈N*.試研究λ的所有可能值,并指出取到每個值時的條件(注:本小題將根據(jù)考生研究的情況分層評分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某地區(qū)在對人們休閑方式的一次調(diào)查中,共調(diào)查了120人,其中女性70人,男性50人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.025的前提下認(rèn)為“性別與休閑方式有關(guān)系”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊答案