【題目】2018河北保定市上學(xué)期期末調(diào)研已知點(diǎn)到點(diǎn)的距離比到軸的距離大1

I)求點(diǎn)的軌跡的方程;

II)設(shè)直線 ,交軌跡、兩點(diǎn), 為坐標(biāo)原點(diǎn),試在軌跡部分上求一點(diǎn),使得的面積最大,并求其最大值.

【答案】I;(II

【解析】試題分析:(1)求軌跡方程可直接根據(jù)題意設(shè)點(diǎn)列等式化簡即可或者根據(jù)我們所學(xué)的橢圓、雙曲線、拋物線的定義取對比也行本題因?yàn)辄c(diǎn)M到點(diǎn)F(1,0) 的距離比到y(tǒng)軸的距離大1,所以點(diǎn)M到點(diǎn)F(1,0)的距離等于它到直線m:x=-1的距離由拋物線定義知道,點(diǎn)M的軌跡是以F為焦點(diǎn),m為準(zhǔn)線的拋物線或x軸負(fù)半軸;(2)根據(jù)題意先分析如何使的面積最大,可知當(dāng)直線l的平行線與拋物線相切時(shí)△ABP的面積最大,然后根據(jù)點(diǎn)到線的距離公式求出高,弦長公式求出底,即得出面積

解析:(1)因?yàn)辄c(diǎn)M到點(diǎn)F(1,0) 的距離比到y(tǒng)軸的距離大1,所以點(diǎn)M到點(diǎn)F(1,0)的距離等于它到直線m:x=-1的距離

由拋物線定義知道,點(diǎn)M的軌跡是以F為焦點(diǎn),m為準(zhǔn)線的拋物線或x軸負(fù)半軸

設(shè)軌跡C的方程為: , ,

軌跡C方程為: , 或 .

(2)設(shè)A(x1,y1),B(x2,y2), P(x0,y0),

直線l化成斜截式為 ,當(dāng)直線l的平行線與拋物線相切時(shí)△ABP的面積最大,

由圖知P點(diǎn)在第四象限.拋物線在x軸下方的圖象解析式: ,所以,

,解得, ,所以P點(diǎn)坐標(biāo),P點(diǎn)到l的距離, A,B兩點(diǎn)滿足方程組 化簡得.

x1,x2 為該方程的根. 所以 ,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線W:y2=4x與圓C:(x-1)2+y2=25交于A,B兩點(diǎn),點(diǎn)P為劣弧上不同于A,B的一個(gè)動(dòng)點(diǎn),與x軸平行的直線PQ交拋物線W于點(diǎn)Q,則△PQC的周長的取值范圍是( )

A. (10,14) B. (12,14)

C. (10,12) D. (9,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且對任意的恒有,已知當(dāng)時(shí),,則下列命題:

①對任意,都有;②函數(shù)上遞減,在上遞增;

③函數(shù)的最大值是1,最小值是0;④當(dāng)時(shí),.

其中正確命題的序號有________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在(0,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞)都有f[f(x)﹣log2x]=6.若x0是方程f(x)﹣f′(x)=4的一個(gè)解,且 ,則a=( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC中內(nèi)角A、B、C所對邊的邊長分別為a、b、c,滿足a2+b2=6abcosC,且
(1)求角C的值;
(2)設(shè)函數(shù) ,圖象上相鄰兩最高點(diǎn)間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中),的一條對稱軸離最近的對稱中心的距離為

的單調(diào)遞增區(qū)間;

中角、的對邊分別是滿足恰是的最大值,試判斷的形狀

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的焦點(diǎn)為F,直線y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.

1)求C的方程;

2)過F的直線C相交于A,B兩點(diǎn),若AB的垂直平分線C相較于M,N兩點(diǎn),且AM,B,N四點(diǎn)在同一圓上,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河北保定市高三上學(xué)期期末調(diào)研如圖,四面體中, 、分別的中點(diǎn), ,

I)求證: 平面;

II)求異面直線所成角的余弦值的大小;

III)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax2+bx+c(a≠0)經(jīng)過點(diǎn)(﹣1,0),(0,0),(1,2).
(1)求f(x)的解析式;
(2)若數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=f(n),求{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案