【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且對(duì)任意的恒有,已知當(dāng)時(shí),,則下列命題:

①對(duì)任意,都有;②函數(shù)上遞減,在上遞增;

③函數(shù)的最大值是1,最小值是0;④當(dāng)時(shí),.

其中正確命題的序號(hào)有________

【答案】①②④

【解析】

根據(jù)已知,分析出函數(shù)的周期性,單調(diào)性,最值,函數(shù)解析式,逐一分析四個(gè)命題的真假,可得答案.

①∵,∴f(x+2)=f[(x+1)-1]=f(x),∴2是函數(shù)f(x)的一個(gè)周期,正確;②當(dāng)時(shí),為增函數(shù),故x∈[-1,0]時(shí),f(x)為減函數(shù),由函數(shù)的周期性可得f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù),正確;③由解析式可知函數(shù)取最小值,取最大值1,故錯(cuò)誤;④設(shè)x∈(3,4),則4-x∈(0,1),f(4-x)==f(-x)=f(x),故正確;

故答案為:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知表示兩個(gè)不同的平面, 表示兩條不同直線(xiàn),對(duì)于下列兩個(gè)命題

①若,”是“”的充分不必要條件;

②若”是“”的充要條件.判讀正確的是(

A. ①②都是真命題 B. ①是真命題,②是假命題

C. ①是假命題,②是真命題 D. ①②都是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知曲線(xiàn)C1:ρ=2cosθ,將曲線(xiàn)C1上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到曲線(xiàn)C,又已知直線(xiàn)l: (t是參數(shù)),且直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn).
(1)求曲線(xiàn)C的直角坐標(biāo)方程,并說(shuō)明它是什么曲線(xiàn);
(2)設(shè)定點(diǎn)P( ,0),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為.

(1)求的值;

(2)求函數(shù)的對(duì)稱(chēng)軸方程;

(3)當(dāng)時(shí),方程有兩個(gè)不同的實(shí)根,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)當(dāng)時(shí),求的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)上單調(diào)遞增,試求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上的焦點(diǎn)為,離心率為

(1)求橢圓方程;

2)設(shè)過(guò)橢圓頂點(diǎn),斜率為的直線(xiàn)交橢圓于另一點(diǎn),交軸于點(diǎn),且, , 成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)市場(chǎng)調(diào)查,超市中的某種小商品在過(guò)去的近40天的日銷(xiāo)售量(單位:件)與價(jià)格(單位:元)為時(shí)間(單位:天)的函數(shù),且日銷(xiāo)售量近似滿(mǎn)足,價(jià)格近似滿(mǎn)足

(1)寫(xiě)出該商品的日銷(xiāo)售額(單位:元)與時(shí)間)的函數(shù)解析式并用分段函數(shù)形式表示該解析式(日銷(xiāo)售額=銷(xiāo)售量商品價(jià)格);

(2)求該種商品的日銷(xiāo)售額的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018河北保定市上學(xué)期期末調(diào)研已知點(diǎn)到點(diǎn)的距離比到軸的距離大1

I)求點(diǎn)的軌跡的方程;

II)設(shè)直線(xiàn) ,交軌跡、兩點(diǎn), 為坐標(biāo)原點(diǎn),試在軌跡部分上求一點(diǎn),使得的面積最大,并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:

①函數(shù)的單調(diào)增區(qū)間是

②若函數(shù)定義域?yàn)?/span>且滿(mǎn)足,則它的圖象關(guān)于軸對(duì)稱(chēng);

③函數(shù)的值域?yàn)?/span>;

④函數(shù)的圖象和直線(xiàn)的公共點(diǎn)個(gè)數(shù)是,則的值可能是;

⑤若函數(shù)上有零點(diǎn),則實(shí)數(shù)的取值范圍是.

其中正確的序號(hào)是_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案