【題目】質(zhì)檢部門對某工廠甲、乙兩個車間生產(chǎn)的12個零件質(zhì)量進(jìn)行檢測.甲、乙兩個車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過20克的為合格.
(1)從甲、乙兩車間分別隨機抽取2個零件,求甲車間至少一個零件合格且乙車間至少一個零件合格的概率;
(2)質(zhì)檢部門從甲車間8個零件中隨機抽取3個零件進(jìn)行檢測,已知三件中有兩件是合格品的條件下,另外一件是不合格品的概率.
(3)若從甲、乙兩車間12個零件中隨機抽取2個零件,用表示乙車間的零件個數(shù),求X的分布列與數(shù)學(xué)期望.
【答案】(1)(2)(3)見解析,
【解析】
(1)考慮甲、乙兩車間抽取的個零件都不合格的情況,利用對立事件的概率求解方法即可計算出目標(biāo)事件的概率;
(2)先考慮抽取的個零件中至少有個是合格的取法數(shù),再考慮抽取的個零件中個合格個不合格的取法數(shù),根據(jù)古典概型的概率計算公式計算出目標(biāo)事件的概率;
(3)先列出的可取值并計算出對應(yīng)取值的概率,然后即可得到的分布列并計算出數(shù)學(xué)期望.
(1)由題意得甲車間的合格零件數(shù)為4,乙車間的合格零件數(shù)為2,
故所求概率為.
即甲車間至少一個零件合格且乙車間至少一個零件合格的概率為.
(2)因為抽取的個零件中至少有個是合格的取法數(shù)有:種,
抽取的個零件中個合格個不合格的取法數(shù)有:種,
所以三件中有兩件是合格品的條件下,另外一件是不合格品的概率:;
(3)由題意可得的所有可能取值為0,1,2.
,,.
∴ 隨機變量的分布列為
0 | 1 | 2 | |
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(1)用定義證明:函數(shù)是R上的增函數(shù);
(2)化簡,并求值:;
(3)若關(guān)于x的方程在上有解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售某海鮮,統(tǒng)計了春節(jié)前后50天該海鮮的需求量(,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進(jìn)貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1公斤可獲利30元.假設(shè)商店每天該海鮮的進(jìn)貨量為14公斤,商店的日利潤為元.
(1)求商店日利潤關(guān)于需求量的函數(shù)表達(dá)式;
(2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替.
①求這50天商店銷售該海鮮日利潤的平均數(shù);
②估計日利潤在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四座城市、、、,其中在的正東方向,且與相距,在的北偏東方向,且與相距;在的北偏東方向,且與相距,一架飛機從城市出發(fā)以的速度向城市飛行,飛行了,接到命令改變航向,飛向城市,此時飛機距離城市有( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)證明:在定義域上存在唯一的極大值點;
(2)若存在,使,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列三圖中的多邊形均為正多邊形,,是所在邊的中點,雙曲線均以圖中的,為焦點,設(shè)圖示①②③中的雙曲線的離心率分別為,,、則,,的大小關(guān)系為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若對任意、,且,都有,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com