16.函數(shù)y=$\sqrt{{x^2}-8x+20}$+$\sqrt{{x^2}+1}$的最小值為(  )
A.12B.25C.8D.5

分析 函數(shù)y=$\sqrt{{x^2}-8x+20}$+$\sqrt{{x^2}+1}$=$\sqrt{(x-4)^{2}+(0-2)^{2}}$+$\sqrt{(x-0)^{2}+[0-(-1{)]}^{2}}$,即求x軸上點(x,0)到兩定點(4,2),(0,-1)距離和的最小值,而兩點位于x軸的兩側(cè),所以最小值即兩點的距離.

解答 解:函數(shù)y=$\sqrt{{x^2}-8x+20}$+$\sqrt{{x^2}+1}$=$\sqrt{(x-4)^{2}+(0-2)^{2}}$+$\sqrt{(x-0)^{2}+[0-(-1{)]}^{2}}$
即求x軸上點(x,0)到兩定點(4,2),(0,-1)距離和的最小值,而兩點位于x軸的兩側(cè),所以最小值即兩點的距離$\sqrt{(4-0)^{2}+(2+1)^{2}}$=5.
故選:D.

點評 本題考查求函數(shù)y=$\sqrt{{x^2}-8x+20}$+$\sqrt{{x^2}+1}$的最小值,考查學(xué)生分析解決問題的能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列函數(shù)中,有奇偶性的函數(shù)是①②⑤⑥⑦⑧.
①y=ex-e-x②y=lg$\frac{1+x}{1-x}$③y=cos2x ④y=sinx+cosx⑤y=log2(x+$\sqrt{1+{x}^{2}}$)⑥y=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$⑦y=$\frac{{e}^{x}+{e}^{-x}}{{e}^{x}-{e}^{-x}}$⑧y=log2(sinx+$\sqrt{1+si{n}^{2}x}$)⑨y=$\frac{\sqrt{1-{x}^{2}}}{|2-x|+|x+2|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.當(dāng)a>0且a≠1時,把函數(shù)y=a-x和y=logax的圖象畫在同一平面直角坐標(biāo)系中,可以是( 。
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知tanθ=$\frac{3}{4}$,θ為第三象限角,求$cos(θ-\frac{π}{4})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{3}$,F(xiàn),A分別是橢圓的左焦點和右點頂點,P是橢圓上任意一點,若$\overrightarrow{PF}$•$\overrightarrow{PA}$的最大值是12,則橢圓方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)的定義域為(0,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2,.
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
xabca+b+c
f(x)ddt4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Ψ={f(x)|f(x)∈Ω2},且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請問:是否存在常數(shù)m,使得?f(x)∈Ψ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若方程x2+y2-2x+4y+m=0表示一個圓,則此圓的圓心坐標(biāo)為(-1,2),m的取值范圍是(-∞,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知袋子中裝有3個紅球、2個白球、1個黑球,如果從中隨機(jī)任取2個,則下列兩個事件中是互斥而不對立的是( 。
A.至少有一個白球;都是白球B.至少有一個白球;至少有一個紅球
C.至少有一個白球;紅球、黑球各一個D.恰有一個白球;白球、黑球各一個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z1=a+bi,z2=-1+ai(a,b∈R),若|z1|<|z2|,則( 。
A.b<-1或b>1B.-1<b<1C.b>1D.b>0

查看答案和解析>>

同步練習(xí)冊答案