在(a,b)內(nèi)(x)>0是f(x)在(a,b)內(nèi)單調(diào)遞增的________條件.

答案:充分
解析:

∵在(ab)內(nèi),f(x)>0,∴f(x)在(ab)內(nèi)單調(diào)遞增.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、關(guān)于“二分法”求方程的近似解,說法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)同時(shí)滿足下列條件:①在閉區(qū)間[a,b]內(nèi)連續(xù),②在開區(qū)間(a,b)內(nèi)可導(dǎo)且其導(dǎo)函數(shù)為f′(x),那么在區(qū)間(a,b)內(nèi)至少存在一點(diǎn)ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我們把這一規(guī)律稱為函數(shù)f(x)在區(qū)間(a,b)內(nèi)具有“Lg”性質(zhì),并把其中的ξ稱為中值.有下列命題:
①若函數(shù)f(x)在(a,b)具有“Lg”性質(zhì),ξ為中值,點(diǎn)A(a,f(a)),B(b,f(b)),則直線AB的斜率為f′(ξ);
②函數(shù)y=
2-
x2
2
在(0,2)內(nèi)具有“Lg”性質(zhì),且中值ξ=
2
,f′(ξ)=-
2
2
;
③函數(shù)f(x)=x3在(-1,2)內(nèi)具有“Lg”性質(zhì),但中值ξ不唯一;
④若定義在[a,b]內(nèi)的連續(xù)函數(shù)f(x)對(duì)任意的x1、x2∈[a,b],x1<x2,有
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)恒成立,則函數(shù)f(x)在(a,b)內(nèi)具有“Lg”性質(zhì),且必有中值ξ=
x1+x2
2

其中你認(rèn)為正確的所有命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象在[a,b]內(nèi)是連續(xù)的曲線,若f(a)•f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:
(1)f(x)在[a,b]內(nèi)是單調(diào)函數(shù);
(2)f(x)在[a,b]上的值域?yàn)閇2a,2b],則稱區(qū)間[a,b]為y=f(x)的“美麗區(qū)間”.
下列函數(shù)中存在“美麗區(qū)間”的是
①③④
①③④
 (只需填符合題意的函數(shù)序號(hào)).
①f(x)=x2(x≥0);   ②f(x)=ex(x∈R); ③f(x)=
1
x
(x>0)
;     ④f(x)=
4x
x2+1
(x≥0)

查看答案和解析>>

同步練習(xí)冊(cè)答案