【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),直線l與y軸的交點(diǎn)為P.
(1)寫出點(diǎn)P的極坐標(biāo)(ρ,θ)(其中ρ>0,0≤θ<2π);
(2)求曲線 上的點(diǎn)到P點(diǎn)距離的最大值.
【答案】
(1)解:因直線l的參數(shù)方程為 (t為參數(shù)),
故直線l的普通方程為2x+y-4=0.
可求得直線2x+y-4=0與y軸的交點(diǎn)坐標(biāo)為(0,4),
所以P點(diǎn)的極坐標(biāo)為(4, ).
(2)解:將曲線方程 化為普通方程(x-2)2+y2=1,故曲線是一個圓,其圓心坐標(biāo)為(2,0).由圓的幾何意義可知,曲線 上的點(diǎn)到P點(diǎn)距離的最大值即點(diǎn)P到圓心的距離加上半徑,所以所求的最大值為 +1=2 +1.
【解析】本題主要考查了,解決問題的關(guān)鍵是應(yīng)先將直線和曲線的參數(shù)方程化為普通方程,再進(jìn)行求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).
(I)求的解析式及單調(diào)遞減區(qū)間;
(II)是否存在常數(shù),使得對于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)詢問某大學(xué)40名不同性別的大學(xué)生在購買食物時是否讀營養(yǎng)說明,得到如下列聯(lián)表:
男 | 女 | 總計(jì) | |
讀營養(yǎng)說明 | 16 | 8 | 24 |
不讀營養(yǎng)說明 | 4 | 12 | 16 |
總計(jì) | 20 | 20 | 40 |
(1)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯誤的概率不超過0.01的前提下認(rèn)為性別與是否讀營養(yǎng)說明之間有關(guān)系?
(2)從被詢問的16名不讀營養(yǎng)說明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學(xué)期望).
(注: ,其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以該直角坐標(biāo)系的原點(diǎn) 為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系下,圓 的方程為 .
(1)求直線 的普通方程和圓 的圓心的極坐標(biāo);
(2)設(shè)直線 和圓 的交點(diǎn)為 、 ,求弦 的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)的離心率為是和的等比中項(xiàng).
(1)求曲線的方程;
(2)傾斜角為的直線過原點(diǎn)且與交于兩點(diǎn),傾斜角為的直線過且與交于兩點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù), .(的圖象連續(xù)不斷)
(1) 求的單調(diào)區(qū)間;
(2) 當(dāng)時,證明:存在,使;
(3) 若存在屬于區(qū)間的,且,使,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),M是PC的中點(diǎn),在DM上取一點(diǎn)G,過G和AP作平面交平面BDM于GH.求證:
(1)AP∥平面BDM;
(2)AP∥GH.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中是自然對數(shù)的底數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)令,討論的單調(diào)性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f'(x)<1(x∈R),則不等式f(x)>x+1的解集為( )
A.(1,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣∞,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com