設1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等比數(shù)列,a2,a4,a6成公差為1的等差數(shù)列,則q的最小值是

[  ]

A.

B.

C.

D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:四川省南充高中2012屆高三第十六次月考數(shù)學理科試題 題型:013

設1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等比數(shù)列,a2,a4,a6成公差為1的等差數(shù)列,則q的最小值是

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設p=(a1,a2,…,a17)是1,2,…,17的任一排列,令kp是滿足不等式

a1+a2+…+ak<ak+1+…+a17的最大下標k,求kp的最大值和最小值,并求所有不同的排列p相應的kp的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=8,a4=2且滿足an+2=2an+1-an  n∈N

(1)求數(shù)列{an}的通項公式;

(2)設Sn=|a1|+|a2|+…+|an|,求sn;

(3)設bn= ( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整數(shù)m,使得對任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

數(shù)列{an}中,a1=2,a2=3,an+1=an-an-1,(a≥2),設Sn=a1+a2+…+an,那么S100-S54+S36


  1. A.
    0
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

同步練習冊答案