已知函數(shù)f(x)=
x1,x2,x3,x4,x5是方程f(x)=m的五個(gè)不等的實(shí)數(shù)根,則x1+x2+x3+x4+x5的取值范圍是( )
A.(0,π) B.(-π,π)
C.(lg π,1) D.(π,10)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
從0,1,2,3,4,5這6個(gè)數(shù)字中任意取4個(gè)數(shù)字組成一個(gè)沒有重復(fù)數(shù)字且能被3整除的四位數(shù),這樣的四位數(shù)有________個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)的圖象向右平移a(a>0)個(gè)單位后關(guān)于x=a+1對(duì)稱,當(dāng)x2>x1>1時(shí),[f(x2)-f(x1)](x2-x1)<0恒成立,設(shè)a=f,b=f(2),c=f(e),則a,b,c的大小關(guān)系為( )
A.c>a>b B.c>b>a
C.a>c>b D.b>a>c
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)y=f(2x)+x是偶函數(shù),且f(2)=1,則f(-2)=( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知定義在R上的函數(shù)y=f(x)滿足以下三個(gè)條件:①對(duì)于任意的x∈R,都有f(x+1)=;②函數(shù)y=f(x+1)的圖象關(guān)于y軸對(duì)稱;③對(duì)于任意的x1,x2∈[0,1],且x1<x2,都有f(x1)>f(x2),則f,f(2),f(3)從小到大的關(guān)系是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=|logx|,若m<n,有f(m)=f(n),則m+3n的取值范圍是( )
A.[2,+∞) B.(2,+∞)
C.[4,+∞) D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]⊆D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說(shuō)法:
①f(x)=3-不可能是k型函數(shù);
②若函數(shù)y=(a≠0)是1型函數(shù),則n-m的最大值為;
③若函數(shù)y=-x2+x是3型函數(shù),則m=-4,n=0;
④設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為.
其中正確的說(shuō)法為________.(填入所有正確說(shuō)法的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知?jiǎng)訄AC過(guò)定點(diǎn)M(0,2),且在x軸上截得弦長(zhǎng)為4.設(shè)該動(dòng)圓圓心的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)點(diǎn)A為直線l:x-y-2=0上任意一點(diǎn),過(guò)A作曲線C的切線,切點(diǎn)分別為P,Q,求△APQ面積的最小值及此時(shí)點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知全集U=R,集合A=,則集合∁UA等于( )
A.{x|x<-2或x>0} B.{x|x≤-2或x>0}
C.{x|x<-2或x≥0} D.{x|x≤-2或x≥0}
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com