已知函數(shù) .
(1)若,求的單調區(qū)間及的最小值;
(2)若,求的單調區(qū)間;
(3)試比較與的大小,并證明你的結論.
(1)0
(2)當時, 的遞增區(qū)間是,遞減區(qū)間是;
當,的遞增區(qū)間是,遞減區(qū)間是
(3)根據(jù)題意,由于由(1)可知,當時,有即,那么利用放縮法來證明。
解析試題分析:(1) 當時, ,在上是遞增.
當時,,.在上是遞減.
故時, 的增區(qū)間為,減區(qū)間為,. 4分
(2) ①若,
當時,,,則在區(qū)間上是遞增的;
當時,, ,則在區(qū)間上是遞減的 6分
②若,
當時, , , ;
. 則在上是遞增的, 在上是遞減的;
當時,,
在區(qū)間上是遞減的,而在處有意義;
則在區(qū)間上是遞增的,在區(qū)間上是遞減的 8分
綜上: 當時, 的遞增區(qū)間是,遞減區(qū)間是;
當,的遞增區(qū)間是,遞減區(qū)間是 9分
(3)由(1)可知,當時,有即
則有
12分
=
故:. 15分
考點:導數(shù)的運用
點評:主要是考查了導數(shù)在研究函數(shù)單調性,以及函數(shù)最值方面的運用,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(I)若不等式的解集為,求實數(shù)的值;
(II)在(I)的條件下,若對一切實數(shù)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對于函數(shù)f(x)(x∈D),若x∈D時,恒有>成立,則稱函數(shù)是D上的J函數(shù).
(Ⅰ)當函數(shù)f(x)=mlnx是J函數(shù)時,求m的取值范圍;
(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),
試比較g(a)與g(1)的大小;
求證:對于任意大于1的實數(shù)x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1) 試判斷函數(shù)在上單調性并證明你的結論;
(2) 若恒成立, 求整數(shù)的最大值;
(3) 求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知f(x)的定義域為(0,+∞),且滿足f(2)=1,f(xy)=f(x)+f(y),又當x2>x1>0時,f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com