(本小題滿分12分)
已知常數(shù),函數(shù)
(1)求的值;   
(2)討論函數(shù)上的單調(diào)性;
(3)求出上的最小值與最大值,并求出相應(yīng)的自變量的取值.

(1),   
(2)上為增函數(shù),在上為減函數(shù)   
(3)① 時(shí),處取得最小值,在處取得最大值
時(shí),處取得最小值
處取得最大值
時(shí),處取得最小值,在處取得最大值

解析試題分析:(1), 
(2)∵,∴上為增函數(shù),在上為減函數(shù)
(3)由函數(shù)上的單調(diào)性可知,處取得最小值,而在處取得最大值 
故有
時(shí),處取得最小值,在處取得最大值
時(shí),處取得最小值,
處取得最大值
時(shí),處取得最小值,在處取得最大值
考點(diǎn):本題主要考查分段函數(shù)的概念,二次函數(shù)的最值,分類討論思想。
點(diǎn)評(píng):中檔題,二次函數(shù)的最值問題,往往有“軸定區(qū)間動(dòng)”、“軸動(dòng)區(qū)間定”等不同情況,關(guān)鍵是討論對(duì)稱軸與給定區(qū)間的相對(duì)位置。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)如果當(dāng)時(shí),恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)設(shè)函數(shù)
(1)畫出函數(shù)y=f(x)的圖像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)畫出函數(shù)的圖象,寫出函數(shù)的單調(diào)區(qū)間;
(2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論的單調(diào)性;
(Ⅱ)設(shè)時(shí),若對(duì)任意,存在,使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(某商品進(jìn)貨單價(jià)為元,若銷售價(jià)為元,可賣出個(gè),如果銷售單價(jià)每漲元,銷售量就減少個(gè),為了獲得最大利潤,則此商品的最佳售價(jià)應(yīng)為多少?)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù),其中.(1) 討論函數(shù)的單調(diào)性,并求出的極值;(2) 若對(duì)于任意,都存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù),其中表示不超過的最大整數(shù),如.
 (1)求的值;
(2)若在區(qū)間上存在x,使得成立,求實(shí)數(shù)k的取值范圍;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖象過點(diǎn),且函數(shù)的圖象關(guān)于軸對(duì)稱;
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案