11.已知集合A={x|-2≤x≤2},B={x|a+1<x<2a-3},若A∪B=A,求實數(shù)a的取值范圍.

分析 根據(jù)A與B的并集為A,得到B為A的子集,列出關(guān)于a的不等式,求出不等式的解集即可求出a的范圍.

解答 解:∵A∪B=A,∴B⊆A,
由A={x|-2≤x≤2},B={x|a+1<x<2a-3},
分兩種情況考慮:當(dāng)B=∅時,則有2a-3≤a+1,
解得:a≤4,滿足題意;
當(dāng)B≠∅時,則有$\left\{\begin{array}{l}{2a-3>a+1}\\{a+1≥-2}\\{2a-3≤2}\end{array}\right.$,無解,
綜上,a的取值范圍為a≤4

點評 此題考查了并集及其運算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=2x-x2(x∈[0,3])的值域是[-3,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)的定義域為R,且滿足f(4)=1,f′(x)為f(x)的導(dǎo)函數(shù),又知y=f′(x)的圖象如圖所示,若兩個正數(shù)a,b滿足,f(2a+b)<1,則$\frac{b+2}{a+1}$的取值范圍是( 。
A.$({\frac{2}{3},6})$B.$[{\frac{2}{3},6}]$C.$[\frac{1}{4},\frac{5}{2}]$D.$({\frac{1}{4},\frac{5}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{-2x}\end{array}}\right.$$\begin{array}{l}(x≤0)\\(x>0)\end{array}$,則f(f(1))的值是(  )
A.-2B.2C.-4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\sqrt{2-3x}$-(x+1)0的定義域為( 。
A.(-1,$\frac{2}{3}$]B.(-1,$\frac{2}{3}$)C.(-∞,-1)∪(-1,$\frac{2}{3}$]D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=log2(4+3x-x2)的單調(diào)遞減區(qū)間是( 。
A.(-∞,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.(-1,$\frac{3}{2}$]D.[$\frac{3}{2}$,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某學(xué)校有老師200人,男學(xué)生1200人,女學(xué)生1000人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個容量為n的樣本,已知女學(xué)生一共抽取了80人,則n的值是( 。
A.193B.192C.191D.190

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1的離心率為$\frac{{\sqrt{3}}}{2}$,過橢圓C上一點P(2,1)作傾斜角互補的兩條直線,分別與橢圓交于點A、B,直線AB與x軸交于點M,與y軸負(fù)半軸交于點N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若△PMN的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x+$\frac{4}{x}$.
(1)判斷函數(shù)f(x)在(0,2)和(2,+∞)上的單調(diào)性并用定義法證明;
(2)設(shè)g(x)=2log2(x+2)-log2x,求g(x)在[1,4]上的值域.

查看答案和解析>>

同步練習(xí)冊答案