如圖,若正方形ABCD所在平面與正方形ABEF所在平面成的角,則異面直線AD與BF所成角的余弦值是________.

答案:
解析:

  連結(jié)CE,則CE=CB=BE=DC

  連結(jié)CE,則CE=CB=BE=DC.又DC∥AB∥FE,DC⊥CB,F(xiàn)E⊥BE,

  ∴DC⊥BE,∴DC⊥CE.∴四邊形DCEF為正方形.連結(jié)CF,則CF=DC.∴cos∠CBF=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,某園林單位準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC的外面種草,△ABC的內(nèi)接正方形PQRS為一水池,其余的地方種花,若BC=a,∠ABC=θ,設(shè)△ABC的面積為S1,正方形的面積為S2
(1)用a,θ表示S1和S2;
(2)當(dāng)a固定,θ變化時(shí),求
S1S2
取最小值時(shí)的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點(diǎn)E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時(shí),EF⊥AD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(I)求證:平面AA1B1B⊥平面BB1C1C;
(II)若AB=2,求三棱柱ABC-A1B1C1體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,∠C=
π
2
.設(shè)∠CBA=θ,BC=a,它的內(nèi)接正方形DEFG的一邊EF在斜邊AB上,D、G分別在AC、BC上.假設(shè)△ABC的面積為S,正方形DEFG的面積為T.
(1)用a,θ表示△ABC的面積S和正方形DEFG的面積T;
(2)設(shè)f(θ)=
T
S
,試求f(θ)的最大值P,并判斷此時(shí)△ABC的形狀;
(3)通過對(duì)此題的解答,我們是否可以作如下推斷:若需要從一塊直角三角形的材料上裁剪一整塊正方形(不得拼接),則這塊材料的最大利用率要視該直角三角形的具體形狀而定,但最大利用率不會(huì)超過第(2)小題中的結(jié)論P(yáng).請(qǐng)分析此推斷是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠C=90°,AC=BC=2
2
,一個(gè)邊長(zhǎng)為2的正方形由位置Ⅰ沿AB平行移動(dòng)到位置Ⅱ停止,若移動(dòng)的距離為x,正方形和△ABC的公共部分的面積為f(x),試求出f(x)的解析式,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案