5.如圖是正四棱錐P-ABCD的三視圖,其中主視圖是邊長為1的正三角形,則這個四棱錐的側(cè)棱長為$\frac{\sqrt{5}}{2}$.

分析 由已知中由已知中正四棱錐P-ABCD的主視圖是邊長為1的正三角形,故棱錐的側(cè)高為1,底面棱長為1,根據(jù)側(cè)棱與底面棱長及側(cè)高的關系,可得答案.

解答 解:由已知中正四棱錐P-ABCD的主視圖是邊長為1的正三角形,
故棱錐的側(cè)高為1,底面棱長為1,
故這個四棱錐的側(cè)棱長為$\sqrt{{1}^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{5}}{2}$,
故答案為:$\frac{\sqrt{5}}{2}$

點評 本題考查的知識點是簡單幾何體的三視圖,棱錐的幾何特征,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知$\overline z$是z的共軛復數(shù),若$\overline z+z=2,(\overline z-z)i=2$(其中i為虛數(shù)單位),則z的值為( 。
A.1-iB.-1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在正三棱錐P-ABC中,點P,A,B,C都在球O的球面上,PA,PB,PC兩兩互相垂直,且球心O到底面ABC的距離為$\frac{\sqrt{3}}{3}$,則球O的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.直角坐標系xOy中,已知點A(1,0),函數(shù)f(x)=sin(2x-$\frac{π}{6}$)的圖象在y軸右側(cè)的第一個最高點為B,則$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.無窮數(shù)列1,3,6,10…的通項公式為( 。
A.an=$\frac{{{n^2}+n}}{2}$B.an=$\frac{{{n^2}-n}}{2}$C.an=n2-n+1D.an=n2+n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點M(2,1),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過原點的直線l1與橢圓C交于P,Q兩點,且在直線l2:x-y+2$\sqrt{6}$=0上存在點M,使得△MPQ為等邊三角形,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PA⊥PC,∠ADC=120°,底面ABCD為菱形,G為PC中點,E,F(xiàn)分別為AB,PB上一點,AB=4AE=4$\sqrt{2}$,PB=4PF.
(1)求證:AC⊥DF;
(2)求證:EF∥平面BDG;
(3)求三棱錐B-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖是實現(xiàn)秦九韶算法的程序框圖,若輸入的x=2,n=2,依次輸入a=3,4,5,6,7,…,則輸出的s=(  )
A.3B.10C.25D.56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=2a[1+sin$\frac{x}{2}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)]+b.
(1)當a=1時,求f(x)的單調(diào)遞增區(qū)間;
(2)當a>0,且x∈[0,π]時,f(x)的值域是[3,4],求a,b的值.

查看答案和解析>>

同步練習冊答案