【題目】設函數f(x)滿足2x2f(x)+x3f′(x)=ex , f(2)= ,則x∈[2,+∞)時,f(x)( )
A.有最大值
B.有最小值
C.有最大值
D.有最小值
【答案】B
【解析】解:由2x2f(x)+x3f'(x)=ex , 當x>0時,
故此等式可化為:f'(x)= ,且當x=2時,f(2)= ,
f'(2)= =0,
令g(x)=e2﹣2x2f(x),g(2)=0,
求導g′(x)=e2﹣2[x2f′(x)+2xf(x)]=e2﹣ = (x﹣2),
當x∈[2,+∞)時,g′(x)>0,
則g(x)在x∈[2,+∞)上單調遞增,
g(z)的最小值為g(2)=0,
則f'(x)≥0恒成立,
∴f(x)的最小值f(2)= ,
故選:B.
【考點精析】掌握利用導數研究函數的單調性是解答本題的根本,需要知道一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費支出與銷售額 (單位:萬元)具有較強的相關性,且兩者之間有如下對應數據:
2 | 4 | 5 | 6 | 8 | |
28 | 36 | 52 | 56 | 78 |
(1)求關于的線性回歸方程;
(2)根據(1)中的線性回歸方程,當廣告費支出為10萬元時,預測銷售額是多少?
參考數據: ,,。
附:回歸方程中斜率和截距的最小二乘估計公式分別為:
,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值.
(1)直線l1過點(-3,-1),并且直線l1與l2垂直;
(2)直線l1與直線l2平行,并且坐標原點到l1,l2的距離相等.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在坐標原點的橢圓的長軸的一個端點是拋物線的焦點,且橢圓的離心率是.
(1)求橢圓的方程;
(2)過點的動直線與橢圓相交于兩點.若線段的中點的橫坐標是,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正三棱錐D﹣ABC側棱兩兩垂直,E為棱AD中點,平面α過點A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,則m,n所成角的余弦值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為,當年產量不足80千件時,(萬元).當年產量不小于80千件時(萬元).每件商品售價為0.05萬元.通過分析,該工廠生產的商品能全部售完.
(1)寫出年利潤(萬元)關于年產量(千件)的函數解析式;
(2)當年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com