【題目】①在同一坐標(biāo)系中,與的圖象關(guān)于軸對稱;
②是奇函數(shù);
③的圖象關(guān)于成中心對稱;
④的最大值為;
⑤的單調(diào)增區(qū)間:。
以上五個判斷正確有____________________(寫上所有正確判斷的序號)。
【答案】
【解析】
結(jié)合相關(guān)知識對給出的每個選項分別進行分析、判斷可得正確的結(jié)論.
對于①,由于,則在同一坐標(biāo)系中,與
的圖象關(guān)于軸對稱,故①正確;
對于② ,函數(shù)的定義域為 ,又,所以函數(shù)是奇函數(shù),故②正確;
對于③,因為的對稱中心,將函數(shù)的圖象向左平移2單位,再向上平移1單位,可得到的圖象的對稱中心為,所以③正確;
對于④,,因為,所以,所以當(dāng)x=0時函數(shù)取得的最小值為,故④不正確;
⑤ 函數(shù)的單調(diào)增區(qū)間為,故⑤不正確.
綜上可得①②③正確.
故答案為:①②③.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機構(gòu)在某一學(xué)校隨機抽取30名學(xué)生參加環(huán)保知識測試,測試成績(單位:分)如圖所示,假設(shè)得分值的中位數(shù)為me , 眾數(shù)為m0 , 平均值為 ,則( )
A.me=m0=
B.me=m0<
C.me<m0<
D.m0<me<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的圖象C在x=﹣ 處的切線方程是y= .
(1)若求a,b的值,并證明:當(dāng)x∈(﹣∞,2]時,g(x)的圖象C上任意一點都在切線y= 上或在其下方;
(2)求證:當(dāng)x∈(﹣∞,2]時,f(x)≥g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)在上是增函數(shù),函數(shù)y=f(x+2)是偶函數(shù),則( )
A. f(1)<f(2.5)<f(3.5) B. f(3.5)<f(1)<f(2.5)
C. f(3.5)<f(2.5)<f(1) D. f(2.5)<f(1)<f(3.5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB+bcosA= csinC.
(1)求cosC;
(2)若a=6,b=8,求邊c的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等比數(shù)列{an}滿足a7=a6+2a5 , 若存在兩項am , an使得 ,則 的最小值為( )
A.
B.
C.
D.不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )
A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個
C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個半徑為1的半球材料中截取兩個高度均為的圓柱,其軸截面如圖所示.設(shè)兩個圓柱體積之和為.
(1)求的表達式,并寫出的取值范圍;
(2)求兩個圓柱體積之和的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com