分析 舉例說(shuō)明①②錯(cuò)誤;由兩直線垂直與系數(shù)的關(guān)系說(shuō)明③正確;由點(diǎn)到直線距離公式說(shuō)明④錯(cuò)誤;由點(diǎn)到直線的垂直距離最小說(shuō)明⑤正確,由點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的求法說(shuō)明⑥正確.
解答 解:①當(dāng)直線l1和l2斜率都存在時(shí),一定有k1=k2⇒l1∥l2,錯(cuò)誤,l1與l2.也可能重合;
②如果兩條直線l1與l2垂直,則它們的斜率之積一定等于-1,錯(cuò)誤,還有是一條直線的斜率為0,而另一條直線的斜率不存在;
③已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1、B1、C1、A2、B2、C2為常數(shù)),若直線l1⊥l2,則A1A2+B1B2=0,正確;
④點(diǎn)P(x0,y0)到直線y=kx+b的距離為$\frac{|k{x}_{0}+b|}{\sqrt{1+{k}^{2}}}$,錯(cuò)誤,應(yīng)化直線方程為一般式,由點(diǎn)到直線的距離公式可得距離為$\frac{|k{x}_{0}-{y}_{0}+b|}{\sqrt{1+{k}^{2}}}$;
⑤直線外一點(diǎn)與直線上一點(diǎn)的距離的最小值就是點(diǎn)到直線的距離,正確;
⑥若點(diǎn)A,B關(guān)于直線l:y=kx+b(k≠0)對(duì)稱,則直線AB的斜率等于-$\frac{1}{k}$,且線段AB的中點(diǎn)在直線l上,正確.
∴以上正確的命題是③⑤⑥.
故答案為:3.
點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了兩直線的位置關(guān)系,考查了點(diǎn)到直線距離公式,訓(xùn)練了點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的求法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 10 | C. | 8 | D. | 不是定值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y={log_{\frac{1}{2}}}(x+1)$ | B. | $y={log_2}\sqrt{{x^2}-1}$ | C. | $y={log_2}\frac{1}{x}$ | D. | $y={log_{0.2}}(4-{x^2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=1與g(x)=x0 | B. | $f(x)=\root{3}{x^3}$與g(x)=x | C. | f(x)=x與$g(x)={(\sqrt{x})^2}$ | D. | f(x)=x與$g(x)=\sqrt{x^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,3,4} | B. | {1,2} | C. | {2,3} | D. | {2,4} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com