((本題滿分14分)
已知.
(1)判斷并證明的奇偶性;
(2)判斷并證明的單調(diào)性;
(3)若對任意恒成立,求的取值范圍.
(1) 為奇函數(shù);
(2) 當時,為上的增函數(shù);
(3)
【解析】(1) (2)利用單調(diào)性和奇偶性的定義證明即可.
(3)解本小題的關(guān)鍵是利用單調(diào)性和奇偶性去掉法則符號f,轉(zhuǎn)化為自變量的大小關(guān)系,最終轉(zhuǎn)化為不等式恒成立問題解決.
,
設(shè),所以不等式轉(zhuǎn)化為對任意恒成立解決即可.
解:(1) ,
為奇函數(shù); …………2分
(2)設(shè)
則
當時,,,為上的增函數(shù);
當時,,,為上的增函數(shù).
綜上可得,當時,為上的增函數(shù). ………………………8分
⑶對任意恒成立,
對任意恒成立
對任意恒成立
對任意恒成立
對任意恒成立
. ……………14分
科目:高中數(shù)學 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實數(shù)m的值
(Ⅱ)若ACRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題
(本題滿分14分)
已知點是⊙:上的任意一點,過作垂直軸于,動點滿足。
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>