【題目】如圖,在底面為正方形的四棱錐P-ABCD中,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是線段PC的中點(diǎn).
(1)求異面直線AP與BE所成角的大。
(2)若點(diǎn)F在線段PB上,使得二面角F-DE-B的正弦值為,求的值.
【答案】(1);(2)
【解析】
試題分析:由已知條件可得兩兩垂直,因此以它們?yōu)樽鴺?biāo)軸建立空間直角坐標(biāo)系,設(shè),寫出各點(diǎn)坐標(biāo),(2)求得的夾角可得異面直線AP與BE所成角的大小(這個(gè)角是銳角);(2),再求出的坐標(biāo),然后求出平面和平面的法向量,則法向量夾角與二面角相等或互補(bǔ),可得出的方程,解之可得值.
試題解析:(1)在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)棱PD⊥底面ABCD,所以DA、DC、DP兩兩垂直,故以為正交基底,建立空間直角坐標(biāo)系D-xyz.
因?yàn)镻D=DC,所以DA=DC=DP,不妨設(shè)DA=DC=DP=2,
則D(0,0,0),A(2,0,0),C(0,2,0),P(0,0,2),B(2,2,0).
因?yàn)镋是PC的中點(diǎn),所以E(0,1,1).
所以=(-2,0,2),=(-2,-1,1),
所以cos<,>=,
從而<,>=
因此異面直線AP與BE所成角的大小為.
(2)由(1)可知,=(0,1,1),=(2,2,0),=(2,2,-2).
設(shè)=λ,則=(2λ,2λ,-2λ),從而=+=(2λ,2λ,2-2λ).
設(shè)m=(x1,y1,z1)為平面DEF的一個(gè)法向量,
則即
取z1=λ,則y1=-λ,x1=2λ-1.
所以m=(2λ-1,-λ,λ)為平面DEF的一個(gè)法向量.
設(shè)n=(x2,y2,z2)為平面DEB的一個(gè)法向量,
則即
取x2=1,則y2=-1,z2=1.
所以n=(1,-1,1)為平面BDE的一個(gè)法向量.
因?yàn)?/span>二面角F-DE-B的正弦值為,所以二面角F-DE-B的余弦的絕對(duì)值為,
即|cos<m,n>|=,
所以,,
化簡(jiǎn)得,4λ2=1,因?yàn)辄c(diǎn)F在線段PB上,所以0≤λ≤1,所以λ=,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)令,討論函數(shù)的單調(diào)性;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在0~1之間隨機(jī)選擇兩個(gè)數(shù),這兩個(gè)數(shù)對(duì)應(yīng)的點(diǎn)將長(zhǎng)度為1的線段分成三條,試求這三條線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 常數(shù)λ>0,且λa1an=S1+Sn對(duì)一切正整數(shù)n都成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)a1>0,λ=100,當(dāng)n為何值時(shí),數(shù)列 的前n項(xiàng)和最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖給出了一個(gè)程序框圖,其作用是輸入x的值,輸出相應(yīng)的y值.若要使輸入的x值與輸出的y值相等,則這樣的x值有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為平行四邊形ABCD所在平面外一點(diǎn),M,N分別為AB,PC的中點(diǎn),平面PAD平面PBC=.
(1)求證:BC∥;
(2)MN與平面PAD是否平行?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值0,最小值,
(1)求實(shí)數(shù)的值;
(2)若關(guān)于x的方程在上有解,求實(shí)數(shù)k的取值范圍;
(3)若,如果對(duì)任意都有,試求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,直線與x,y軸分別交于A,B兩點(diǎn),0為坐標(biāo)原點(diǎn),且△OAB 的面積的最小值為
(1)求橢圓的離心率;
(2) 設(shè)點(diǎn)C、D、F2分別為橢圓的上、下頂點(diǎn)以及右焦點(diǎn),E 為線段OD 的中點(diǎn),直線F2E 與橢圓 相交于M、N 兩點(diǎn),若,求橢圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com