A. | ①② | B. | ①③ | C. | ②③ | D. | ②④ |
分析 ①,設(shè)焦點(±c,0)到漸近線bx±ay=0的距離等于$\frac{bc}{\sqrt{{a}^{2}+^{2}}}=b$;
②,PM|+|PN|=3<4,則動點P的軌跡不存在;
③,方程x2-mx+1=0(m>2)的兩根之和大于2,兩根之積等于1,故兩根中,一根大于1,一根大于0小于1;
④,雙曲線的焦點是(±5,0),橢圓的焦點是(±$\sqrt{7}$,0),故不正確;
解答 解:對于①,設(shè)焦點(±c,0)到漸近線bx±ay=0的距離等于$\frac{bc}{\sqrt{{a}^{2}+^{2}}}=b$,正確;
對于②,已知M(-2,0)、N(2,0),|PM|+|PN|=3<4,則動點P的軌跡不存在,故不正確;
對于③,方程x2-mx+1=0(m>2)的兩根之和大于2,兩根之積等于1,故兩根中,一根大于1,一根大于0小于1,故可分別作為橢圓和雙曲線的離心率.正確;
對于④,雙曲線的焦點是(±5,0),橢圓的焦點是(±$\sqrt{7}$,0),故不正確;
故選:B
點評 本題考查了橢圓與雙曲線的定義、焦點坐標(biāo)和離心率等知識,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 240 | B. | 360 | C. | 540 | D. | 600 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -$\frac{2}{3}$ | C. | 0或-$\frac{2}{3}$ | D. | 0或1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 98 | B. | 94 | C. | 94.5 | D. | 95 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com