___________.

解析試題分析:這是“”型極限,方法是分子分母同時除以分子分母的最高次冪,.
考點:“”型極限.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)設(shè)數(shù)列的前項和為.已知,.
(Ⅰ)寫出的值,并求數(shù)列的通項公式;
(Ⅱ)記為數(shù)列的前項和,求;
(Ⅲ)若數(shù)列滿足,,求數(shù)列的通項公式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知公差大于零的等差數(shù)列,前項和為.且滿足
(Ⅰ)求數(shù)列的通項公式;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題14分)設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項和。
已知,且構(gòu)成等差數(shù)列.
(1)求數(shù)列的通項公式.
(2)令,求數(shù)列的前項和.
(3),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)某家庭為小孩買教育保險,小孩在出生的第一年父母就交納保險金,數(shù)目為a1,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的保險金數(shù)目為a1,a2,…是一個公差為d的等差數(shù)列,與此同時保險公司給予優(yōu)惠的利息政策,不僅采用固定利率,而且計算復利,這就是說,如果固定利率為r(r>0),那么,在第n年末,第一年所交納的保險金就變?yōu)閍1(1+r)n-1,第二年所交納的保險金就變?yōu)閍2(1+r)n-2,…,以Tn表示到第n年末所累計的保險金總額。
(1)寫出Tn與Tn+1的遞推關(guān)系(n≥1);
(2)若a1=1,d=0.1,求{Tn}的通項公式。(用r表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

過點且方向向量為的直線交橢圓兩點,記原點為,面積為,則_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

計算:         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設(shè) ,,(e是自然對數(shù)的底數(shù)),則

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知m>1,a=,b=,則以下結(jié)論正確的是(  )

A.a(chǎn)>b B.a(chǎn)=b
C.a(chǎn)<b D.a(chǎn),b的大小不確定

查看答案和解析>>

同步練習冊答案