分析 利用二倍角的正切函數(shù),求出正切函數(shù)值,利用二倍角的余弦函數(shù)以及誘導(dǎo)公式化簡所求表達(dá)式,然后求解即可.
解答 解:tan2θ=-2$\sqrt{2}$,且π<2θ<2π,∴θ∈($\frac{π}{2},π$)
可得$\frac{2tanθ}{1-{tan}^{2}θ}=-2\sqrt{2}$,
解得tan$θ=\sqrt{2}$(舍去)或tanθ=$-\frac{\sqrt{2}}{2}$
$\frac{2co{s}^{2}\frac{θ}{2}-sinθ-1}{\sqrt{2}sin(θ+\frac{π}{2})}$=$\frac{cosθ-sinθ}{\sqrt{2}cosθ}$=$\frac{1-tanθ}{\sqrt{2}}$=$\frac{\sqrt{2}+1}{2}$.
點(diǎn)評 本題考查二倍角公式的應(yīng)用,三角函數(shù)化簡求值,考查計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$+$\frac{3\sqrt{3}π}{2}$+$\frac{3π}{2}$+1 | B. | 2$\sqrt{5}$+3$\sqrt{3}$π+$\frac{3π}{2}$+1 | C. | $\sqrt{5}$+$\frac{3\sqrt{3}π}{2}$+$\frac{3π}{2}$ | D. | $\sqrt{5}$+$\frac{3\sqrt{3}π}{2}$+$\frac{π}{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2tanα | B. | 2tanα | C. | -2cotα | D. | 2cotα |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com