已知,數(shù)列滿足,數(shù)列滿足;又知數(shù)列中,,且對任意正整數(shù).
(Ⅰ)求數(shù)列和數(shù)列的通項(xiàng)公式;
(Ⅱ)將數(shù)列中的第項(xiàng),第項(xiàng),第項(xiàng),……,第項(xiàng),……刪去后,剩余的項(xiàng)按從小到大的順序排成新數(shù)列,求數(shù)列的前項(xiàng)和.

(1),
(2)

解析試題分析:解:  , 3分
又由題知:令,則,   5分
,則,,所以恒成立
,當(dāng),不成立,所以    6分
(Ⅱ)由題知將數(shù)列中的第3項(xiàng)、第6項(xiàng)、第9項(xiàng)……刪去后構(gòu)成的新數(shù)列中的奇數(shù)列與偶數(shù)列仍成等比數(shù)列,首項(xiàng)分別是,公比均是 9分
 
… 12分
考點(diǎn):數(shù)列的運(yùn)用
點(diǎn)評:解決的關(guān)鍵是對于數(shù)列的分組求和以及等比數(shù)列的求和公式得到,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

對數(shù)列,規(guī)定為數(shù)列的一階差分?jǐn)?shù)列,其中, 對自然數(shù),規(guī)定階差分?jǐn)?shù)列,其中
(1)已知數(shù)列的通項(xiàng)公式,試判斷是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列首項(xiàng),且滿足,求數(shù)列的通項(xiàng)公式。
(3)對(2)中數(shù)列,是否存在等差數(shù)列,使得對一切自然都成立?若存在,求數(shù)列的通項(xiàng)公式;若不存在,則請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}是首項(xiàng)a1=4,公比q≠1的等比數(shù)列,Sn是其前n項(xiàng)和,且成等差數(shù)列.
(1)求公比q的值;
(2)求Tn=a2+a4+a6+…+a2n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對任意都有
(Ⅰ)求的值.
(Ⅱ)數(shù)列滿足:=+,數(shù)列是等差數(shù)列嗎?請給予證明;
(Ⅲ)令試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律。下圖是一個(gè)11階楊輝三角:
(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14個(gè)數(shù)與第15個(gè)數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35。顯然,1+3+6+10+15=35。事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù)。試用含有m、k的數(shù)學(xué)公式表示上述結(jié)論,并給予證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,且
(1)寫出的遞推關(guān)系式,并求,,的值;
(2)猜想關(guān)于的表達(dá)式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列{an}(n∈N*)中,已知a1=1,a2k=-ak,a2k-1=(-1)k+1ak,k∈N*. 記數(shù)列{an}的前n項(xiàng)和為Sn.
(1)求S5,S7的值;
(2)求證:對任意n∈N*,Sn≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為,滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列滿足為數(shù)列的前項(xiàng)和,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知二次函數(shù)同時(shí)滿足:①不等式的解集有且只有一個(gè)元素;②在定義域內(nèi)存在,使得不等式成立.
設(shè)數(shù)列的前項(xiàng)和,
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列中,令,,求;
(3)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列的變號數(shù)。令為正整數(shù)),求數(shù)列的變號數(shù).

查看答案和解析>>

同步練習(xí)冊答案