如圖,在平面直角坐標系xOy中,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),已知點(1,e)和(e,
3
2
)都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓的方程;
(2)設A、B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,若|AF1|-|BF2|=
6
2
,求直線AF的斜率.
(1)∵橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),
點(1,e)和(e,
3
2
)都在橢圓上,
1
a2
+
e2
b2
=1
e2
a2
+
3
4b2
=1

e2=
c2
a2
=
a2-b2
a2
=1-
b2
a2
,
1
a2
+
e2
b2
=
1
a2
+
1-
b2
a2
b2
=
1
a2
+
1
b2
-
1
a2
=1
,解得b2=1,

e2
a2
+
3
4b2
=
a2-b2
a4
+
3
4b2
=1
,
∴a4-4a2+4=(a2-2)=0,解得a2=2,
∴橢圓方程為
x2
2
+y2=1

(2)∵橢圓方程為
x2
2
+y2=1
,∴F1(-1,0),F(xiàn)2(1,0),
又∵直線AF1與直線BF2平行,∴設AF1與BF2的方程分別為x+1=my,x-1=my.
設A(x1,y1),B(x2,y2),y1>0,y2>0,
∴由
x12
2
+y12=1
x1+1=my1
,得(m2+2)y12-2my1-1=0.
y1=
m+
2m2+2
m2+2
,或y1=
m-
2m2+2
m2+2
(舍),
∴|AF1|=
m2+1
×|0-y1|
=
2
(m2+1)+m
m2+1
m2+2
,①
同理|BF2|=
2
(m2+1)-m
m2+1
m2+2
,②
∵|AF1|-|BF2|=
6
2
,
∴由①②得|AF1|-|BF2|=
2m
m2+1
m2+2
=
6
2
,解得m2=2.
∵注意到m>0,∴m=
2

∴直線AF1的斜率為
1
m
=
2
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

點P在直線l:y=x-1上,若存在過P的直線交拋物線y=x2于A,B兩點,且
PA
=
AB
,則稱點P為“λ點”,那么直線l上有______個“λ點”.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若θ是任意實數(shù),則方程x2+4y2sinθ=1所表示的曲線一定不是( 。
A.圓B.雙曲線C.直線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線L:y=kx+1與橢圓C:ax2+y2=2(a>1)交于A、B兩點,以OA、OB為鄰邊作平行四邊形OAPB(O為坐標原點).
(1)若k=1,且四邊形OAPB為矩形,求a的值;
(2)若a=2,當k變化時(k∈R),求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,F(xiàn)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為
1
2
.點C在x軸上,BC⊥BF,B,C,F(xiàn)三點確定的圓M恰好與直線l1x+
3
y+3=0
相切.
(Ⅰ)求橢圓的方程:
(Ⅱ)過點A的直線l2與圓M交于PQ兩點,且
MP
MQ
=-2
,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直線l:y=
3
(x-4)
關于直線l1:y=
b
a
x
對稱的直線l′與x軸平行.
(1)求雙曲線的離心率;
(2)若點M(4,0)到雙曲線上的點P的最小距離等于1,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點A(-2,0),B(2,0),M(-1,0),直線PA,PB相交于點P,且它們的斜率之積為-
3
4

(1)求動點P的軌跡方程;
(2)試判斷以PB為直徑的圓與圓x2+y2=4的位置關系,并說明理由;
(3)直線PM與橢圓的另一個交點為N,求△OPN面積的最大值(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在以點O為圓心,AB為直徑的半圓中,D為半圓弧的中心,P為半圓弧上一點,且AB=4,∠POB=30°,雙曲線C以A,B為焦點且經過點P.
(1)建立適當?shù)钠矫嬷苯亲鴺讼,求雙曲線C的方程;
(2)設過點D的直線l與雙曲線C相交于不同兩點E、F,若△OEF的面積不小于2
2
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,橢圓C的上、下頂點分別為A1,A2,左、右頂點分別為B1,B2,左、右焦點分別為F1,F(xiàn)2.原點到直線A2B2的距離為
2
5
5

(1)求橢圓C的方程;
(2)過原點且斜率為
1
2
的直線l,與橢圓交于E,F(xiàn)點,試判斷∠EF2F是銳角、直角還是鈍角,并寫出理由;
(3)P是橢圓上異于A1,A2的任一點,直線PA1,PA2,分別交x軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T.證明:線段OT的長為定值,并求出該定值.

查看答案和解析>>

同步練習冊答案