(1)已知定點(diǎn)、,動點(diǎn)N滿足(O為坐標(biāo)原點(diǎn)),,,,求點(diǎn)P的軌跡方程.
(2)如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn)

(。┰O(shè)直線的斜率分別為,求證:為定值;
(ⅱ)當(dāng)點(diǎn)運(yùn)動時,以為直徑的圓是否經(jīng)過定點(diǎn)?請證明你的結(jié)論.

(1);(2),以為直徑的圓恒過定點(diǎn).

解析試題分析:本題主要考查雙曲線的定義、標(biāo)準(zhǔn)方程,橢圓的標(biāo)準(zhǔn)方程等基礎(chǔ)知識,考查數(shù)形結(jié)合思想,考查學(xué)生的分析問題解決問題的能力和計(jì)算能力.第一問,利用得到N是的中點(diǎn),數(shù)形結(jié)合,利用得M、P、共線,在三角形中,利用中位線得,利用得到F1M⊥PN,在三角形中,中點(diǎn)和高的垂足重合,得|PM|=|PF1|,由雙曲線的定義可知點(diǎn)P的軌跡為雙曲線,(。├脵E圓的標(biāo)準(zhǔn)方程得到點(diǎn)A、B的坐標(biāo),設(shè)出點(diǎn)P的坐標(biāo),從而求出,利用點(diǎn)P在橢圓上進(jìn)行的轉(zhuǎn)化,計(jì)算出結(jié)果為常數(shù)即可,(ⅱ)設(shè)出點(diǎn)Q的坐標(biāo),根據(jù)已知條件求出點(diǎn)M、N的坐標(biāo),寫出坐標(biāo),利用,列出等式,求出定點(diǎn)坐標(biāo).
試題解析:(1)連接ON∵ ∴點(diǎn)N是MF1中點(diǎn) ∴|MF2|=2|NO|=2
 ∴F1M⊥PN   ∴|PM|=|PF1|
∴|∣PF1|-|PF2∣|=||PM|-|PF2||=|MF2|=2<|F1F2|
由雙曲線的定義可知:點(diǎn)P的軌跡是以F1,F(xiàn)2為焦點(diǎn)的雙曲線.
點(diǎn)P的軌跡方程是                    4分
(2)(。,,令,則由題設(shè)可知,
直線的斜率,的斜率,
又點(diǎn)在橢圓上,所以),
從而有.          8分
(ⅱ)設(shè)點(diǎn)是以為直徑的圓上任意一點(diǎn),則,又易求 
、.
所以.
故有.又,化簡后得到以
為直徑的圓的方程為.    11分
,解得.   13分
所以以為直徑的圓恒過定點(diǎn).    14分
考點(diǎn):雙曲線的定義、標(biāo)準(zhǔn)方程,橢圓的標(biāo)準(zhǔn)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點(diǎn)P 為橢圓上一點(diǎn),直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過橢圓上一點(diǎn)P作橢圓的切線交直線于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖已知拋物線過點(diǎn),直線兩點(diǎn),過點(diǎn)且平行于軸的直線分別與直線軸相交于點(diǎn)
 
(1)求的值;
(2)是否存在定點(diǎn),當(dāng)直線過點(diǎn)時,△與△的面積相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的右焦點(diǎn),右頂點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動直線與橢圓有且只有一個交點(diǎn),且與直線交于點(diǎn),問:是否存在一個定點(diǎn),使得.若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的方程為,其中.
(1)求橢圓形狀最圓時的方程;
(2)若橢圓最圓時任意兩條互相垂直的切線相交于點(diǎn),證明:點(diǎn)在一個定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是橢圓上兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)當(dāng)關(guān)于點(diǎn)對稱時,求證:;
(2)當(dāng)直線經(jīng)過點(diǎn)時,求證:不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的短半軸長為,動點(diǎn)在直線為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設(shè)是橢圓的右焦點(diǎn),過點(diǎn)的垂線與以為直徑的圓交于點(diǎn)
求證:線段的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過點(diǎn),離心率為
(1)求橢圓的方程;
(2)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓的右頂點(diǎn).直線與直線分別與軸交于點(diǎn),試問以線段為直徑的圓是否過軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知梯形ABCD中|AB|=2|CD|,點(diǎn)E滿足=λ,雙曲線過C、D、E三點(diǎn),且以A、B為焦點(diǎn).當(dāng)≤λ≤時,求雙曲線離心率e的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案