(1)求證:Cn-1m+Cn-1m-2+2Cn-1m-1=Cn+1m
(2)設(1-
2
x)2004=a0+a1x+a2x2+…+a2004x2004,其中,a0,a1,a2,…,a2004是常數(shù),求:(a0+a2+a4+…+a20042-(a1+a3+a5+…+a20032的值.
(1)證明:Cn-1m+Cn-1m-2+2Cn-1m-1=(Cn-1m+Cn-1m-1)+(Cn-1m-1+Cn-1m-2)=Cnm+Cnm-1=Cn+1m
所以Cn-1m+Cn-1m-2+2Cn-1m-1=Cn+1m;
(2)令x=1,則有(1-
2
)2004=a0+a1+a2+…+a2004
,
令x=-1則有(1+
2
)2004=a0-a 1+a2-a3+…+(-1)2004a2004

(a0+a2+…+a2004)2-(a1+a3+…+a2003)2

=(a0+a1+a2+…+a2004)(a0-a1+a2-…+a2004)

=(1-
2
)
2004
(1+
2
)
2004
=[(1-
2
)(1+
2
)]
2004
=(-1)2004=1

所以:(a0+a2+a4+…+a20042-(a1+a3+a5+…+a20032=1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項a1=
1
33
,公比q=
1
33
的等比數(shù)列,設bn+15log3an=t,常數(shù)t∈N*,數(shù)列{cn}滿足cn=anbn
(1)求證:{bn}是等差數(shù)列;
(2)若{cn}是遞減數(shù)列,求t的最小值;
(3)是否存在正整數(shù)k,使ck,ck+1,ck+2重新排列后成等比數(shù)列?若存在,求k,t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N*)

(1)求證:數(shù)列{
1
an
+(-1)n}
(n∈N*)是等比數(shù)列;
(2)設cn=ansin
(2n-1)π
2
,數(shù)列{cn}的前n項和Tn,求證:對任意的n∈N*,Tn
4
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項為a1=2,前n項和為Sn,且對任意的n∈N*n,≥2,an總是3Sn-4與2-
5
2
Sn-1
的等差中項.
(1)求證:數(shù)列{an}是等比數(shù)列,并求通項an;
(2)證明:
1
2
(log2Sn+log2Sn+2)<log2Sn+1
;
(3)若bn=
4
an
-1,cn=log2(
4
an
)2
,Tn,Rn分別為{bn}、{cn}的前n項和.問:是否存在正整數(shù)n,使得Tn>Rn,若存在,請求出所有n的值,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且對于任意的n∈N*,恒有Sn=2an-n,設bn=log2(an+1),
(1)求證數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an},{bn}的通項公式an和bn;
(3)設cn=
2bn
anan+1
,①求數(shù)列{cn}的最大值.②求
lim
n→∞
(
c1+c2+…+cn).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•贛州模擬)如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點.且CC1=
2
AC

(1)求證:CN∥面AMB1;
(2)求證:B1M⊥面AMG;
(3)求:VAMB1GVABC-A1B1C1

查看答案和解析>>

同步練習冊答案