已知數(shù)列{an}中,a1=1,an+1=an+n,利用如圖所示的程序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框中應(yīng)填的語(yǔ)句是( )

A.n>10
B.n≤10
C.n<9
D.n≤9
【答案】分析:通過(guò)觀察程序框圖,分析為填判斷框內(nèi)判斷條件,n的值在執(zhí)行運(yùn)算之后還需加1,故判斷框內(nèi)數(shù)字應(yīng)減1,從而進(jìn)行判斷框即可.
解答:解:通過(guò)分析,本程序框圖為“當(dāng)型“循環(huán)結(jié)構(gòu)
判斷框內(nèi)為滿足循環(huán)的條件
第1次循環(huán),m=1+1=2           n=1+1=2
第2次循環(huán),m=2+2=4           n=2+1=3

當(dāng)執(zhí)行第10項(xiàng)時(shí),n=11
n的值為執(zhí)行之后加1的值,
所以,判斷條件應(yīng)為進(jìn)入之前的值
故答案為:n≤9或n<10,
故選D.
點(diǎn)評(píng):本題考查程序框圖,通過(guò)對(duì)程序框圖的分析對(duì)判斷框進(jìn)行判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案