18.已知扇形AOB的周長是6cm,該扇形中心角是$\frac{π}{3}$弧度,
(1)求該弓形的周長;
(2)求該弓形的面積.

分析 (1)設(shè)扇形AOB的半徑為r,利用弧長公式結(jié)合已知,求出半徑,進而可得弓形的周長;
(2)利用扇形、三角形的面積計算公式即可得出

解答 解(1)設(shè)扇形AOB的半徑為r,
則扇形AOB的周長為:2r+$\frac{π}{3}$r=6,
解得:r=$\frac{6}{2+\frac{π}{3}}$=$\frac{18}{6+π}$,
因為△AOB是等邊三角形,故扇形周長減一個半徑,就是弓形周長了,
故弓形的周長為:6-$\frac{18}{6+π}$=$\frac{18+6π}{6+π}$,
(2)扇形AOB的面積為:$\frac{1}{6}$πr2=$\frac{54π}{(6+π)^{2}}$,
等邊三角形AOB的面積為:$\frac{\sqrt{3}}{4}$r2=$\frac{81\sqrt{3}}{{(6+π)}^{2}}$,
故弓形的面積S=$\frac{54π-81\sqrt{3}}{{(6+π)}^{2}}$

點評 本題考查的知識點是弓形周長和面積的計算,熟練掌握扇形面積公式,弧長公式是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2-x-6>0},B={x|x>1},則(∁RA)∩B=( 。
A.[-2,3]B.(1,3]C.(1,3)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(-6,-8),求cos<$\overrightarrow{a}$•$\overrightarrow$>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.傾斜角為$\frac{π}{4}$的直線l與拋物線y2=2px(p>0)有公共點(1,2).求:
(1)拋物線的方程;
(2)直線l的方程;
(3)拋物線的焦點到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.A,B,C,D,E五個人排成一行照相.
(1)A在B的左側(cè)且相鄰,有多少種排法?
(2)A和B相鄰,有多少種排法?
(3)A和B不相鄰,有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.任意作一個向量$\overrightarrow{a}$,請畫出向量$\overrightarrow$=-2$\overrightarrow{a}$,$\overrightarrow{c}$=$\overrightarrow{a}$-$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知點A(-2,1),B(3,-1)關(guān)于直線l對稱,且點(2,$\frac{3}{2}$)在直線l上,則直線l的方程是2x-2y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=sin2(x-$\frac{π}{3}$)+2acos(x+$\frac{π}{6}$).
(1)若a=1,且α是第三象限角,f(α)=-$\frac{5}{9}$,求tan(α-$\frac{π}{3}$)的值;
(2)若y=f(x)在x∈R上有最小值-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知θ∈R,向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow$=(2,1),若$\overrightarrow{a}$∥$\overrightarrow$,則sin2θ(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{2}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

同步練習冊答案