【題目】(1)已知橢圓方程為,點

i.若關(guān)于原點對稱的兩點記直線的斜率分別為,試計算的值;

ii.若關(guān)于原點對稱的兩點記直線的斜率分別為,試計算的值;

(2)根據(jù)上題結(jié)論探究:若是橢圓上關(guān)于原點對稱的兩點,點是橢圓上任意一點,且直線的斜率都存在,并分別記為,試猜想的值,并加以證明.

【答案】(1);(2)見解析.

【解析】試題分析:(1)i直接求出、的值,即可得結(jié)果;ii直接求出的值,即可得結(jié)果;(2)根據(jù)兩種特殊情況進(jìn)行歸納推理可得 其中點是橢圓上關(guān)于原點對稱的兩點,點是橢圓上任意一點,然后設(shè)出點 的坐標(biāo),代入橢圓方程并作差,變形整理即可得到是與點位置無關(guān)的定值.

試題解析:(1)i. 因為,

所以

ii. 因為,

所以

(2)猜想

證明: 設(shè)點,則點,從而,設(shè)點,

,

(*)

, ,

代入(*)式得

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)B=,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集

(1)若,求實數(shù)q的取值范圍

(2)若中有四個元素,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求曲線在點處的切線方程;

2)若, .

i)求實數(shù)的最大值;

ii)證明不等式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x)=f(x+4),當(dāng)2≤x≤6時, f(4)=31.

(1)求m,n的值;

(2)比較f(log3m)與f(log3n)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

(1)當(dāng)時,解不等式

(2)若恒成立,求的取值范圍;

(3)若關(guān)于的方程在區(qū)間內(nèi)的解恰有一個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】化為推出一款6寸大屏手機(jī),現(xiàn)對500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:

女性用戶:

分值區(qū)間

頻數(shù)

20

40

80

50

10

男性用戶:

分值區(qū)間

頻數(shù)

45

75

90

60

30

(1)如果評分不低于70分,就表示該用戶對手機(jī)認(rèn)可,否則就表示不認(rèn)可,完成下列列聯(lián)表并回答是否有的把握認(rèn)為性別對手機(jī)的認(rèn)可有關(guān):

女性用戶

男性用戶

合計

認(rèn)可手機(jī)

不認(rèn)可手機(jī)

合計

附:

0.05

0.01

3.841

6.635

(2)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取2名用戶,求2名用戶中評分小于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),( )滿足:①;②.

(1)求的值;

(2)若對任意的實數(shù),都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,角對的邊分別為,.

(1)若,

(2)若,面積為,.

查看答案和解析>>

同步練習(xí)冊答案