“a>1”是“l(fā)na>0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:直接利用充要條件中條件與結(jié)論的推導(dǎo)關(guān)系判斷即可.
解答: 解:“a>1”可得“l(fā)na>0”,“l(fā)na>0”可得“a>1”,所以“a>1”是“l(fā)na>0”的充要條件.
故選:C.
點(diǎn)評:本題考查充要條件的判斷與應(yīng)用對數(shù)的運(yùn)算法則的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin
x
4
cos
x
4
+cos2
x
4

(Ⅰ)若f(θ)=1,求cos(
2
3
π-θ)的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

m
=(sinωx,cosωx)
,
n
=(
3
cosωx,-cosωx)(ω>0)
,記f(x)=
m
n
,已知y=f(x)圖象的兩條相鄰對稱軸之間的距離為
π
4

(Ⅰ)求ω的值;
(Ⅱ)若△ABC的內(nèi)角A,B,C所對的邊a,b,c滿足b2=ac,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一塊耕地上種植一種作物,每季種植成本為800元,此作物的市場價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:
作物產(chǎn)量(kg)300500
概率0.50.5
作物市場價(jià)格(元/kg)610
概率0.20.8
(Ⅰ)設(shè)X表示在這塊地上種植1季此作物的利潤,求X的分布列;
(Ⅱ)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,x,y滿足約束條件
x≥1
x+y≤3
y≥a(x-3)
,若z=2x+y的最小值為1,則a=( 。
A、
1
2
B、
1
3
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙丙三所學(xué)校的6位同學(xué)參加數(shù)學(xué)競賽培訓(xùn),其中甲有1名,乙有2名,丙有3名,培訓(xùn)后照相留念,則同一所學(xué)校的學(xué)生不相鄰的排法總數(shù)為( 。
A、96B、108
C、114D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-5,0),N(5,0)是平面上的兩點(diǎn),若曲線C上至少存在一點(diǎn)P,使|PM|=|PN|+6,則稱曲線C為“黃金曲線”.下列五條曲線:
y2
16
-
x2
9
=1;
x2
4
+
y2
9
=1;          
x2
4
-
y2
9
=1;
④y2=4x;
⑤x2+y2=9.
其中為“黃金曲線”的是
 
.(寫出所有“黃金曲線”的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(α+
π
3
)=-
4
5
,則sin(α-
π
6
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=cos2x+1的圖象向右平移
π
4
個單位,再向下平移一個單位后得到y(tǒng)=f(x)的圖象,則函數(shù)f(x)=( 。
A、cos(2x+
π
4
B、cos(2x-
π
4
C、sin2x
D、-sin2x

查看答案和解析>>

同步練習(xí)冊答案