設(shè)A是自然數(shù)集的一個非空子集,對于k∈A,如果k2∉A,且
k
∉A
,那么k是A的一個“酷元”,給定S={x∈N|y=lg(36-x2)},設(shè)集合M由集合S中的兩個元素構(gòu)成,且集合M中的兩個元素都是“酷元”,那么這樣的集合M有( 。
分析:由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5,由題意可知:集合M不能含有0,1,也不能同時含有2,4,通過列舉可得.
解答:解:由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5
由題意可知:集合M不能含有0,1,也不能同時含有2,4
故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5}
故選C
點評:本題為列舉法解決問題,正確理解題目給出的新定義是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是自然數(shù)集的一個非空子集,對于k∈A,如果k2∉A,且
k
∉A
,那么k是A的一個“酷元”,給定S={x∈N|y=lg(36-x2)},設(shè)集合M由集合S中的兩個元素構(gòu)成,且集合M中的兩個元素都是“酷元”,那么這樣的集合M有
5個
5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高二下學(xué)期第二階段(半期)考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)A是自然數(shù)集的一個非空子集,對于,如果,且,那么k是A的一個“酷元”,給定,設(shè),且集合M中的兩個元素都是“酷元”,那么這樣的集合M有(     )個

A.3                B.4                C.5                D.6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)A是自然數(shù)集的一個非空子集,對于k∈A,如果k2∉A,且
k
∉A
,那么k是A的一個“酷元”,給定S={x∈N|y=lg(36-x2)},設(shè)集合M由集合S中的兩個元素構(gòu)成,且集合M中的兩個元素都是“酷元”,那么這樣的集合M有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)備考復(fù)習(xí)卷B1:集合與函數(shù)概念(解析版) 題型:選擇題

設(shè)A是自然數(shù)集的一個非空子集,對于k∈A,如果k2∉A,且,那么k是A的一個“酷元”,給定S={x∈N|y=lg(36-x2)},設(shè)集合M由集合S中的兩個元素構(gòu)成,且集合M中的兩個元素都是“酷元”,那么這樣的集合M有( )
A.3個
B.4個
C.5個
D.6個

查看答案和解析>>

同步練習(xí)冊答案