【題目】【河南省2017屆高中畢業(yè)年級(jí)考前預(yù)測(cè)數(shù)學(xué)(理)】已知圓與直線相切,設(shè)點(diǎn)為圓上一動(dòng)點(diǎn), 軸于,且動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)直線與直線垂直且與曲線交于兩點(diǎn),求面積的最大值.
【答案】(1);(2).
【解析】試題分析:(1)先利用直線和圓相切求出圓的方程,再利用平面向量共線和“相關(guān)點(diǎn)法”求曲線的方程;(2)利用兩直線間的垂直關(guān)系設(shè)出直線方程,再聯(lián)立直線和橢圓的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和三角形的面積公式得到表達(dá)式,再利用基本不等式求其最值.
試題解析:(1)設(shè)動(dòng)點(diǎn), ,因?yàn)?/span>軸于,所以,
由題意得: ,
所以圓的方程為.
由題意, ,所以,
所以,即
將代入圓,得動(dòng)點(diǎn)的軌跡方程.
(2)由題意可設(shè)直線,設(shè)直線與橢圓交于, ,
聯(lián)立方程,得,
,解得,
,
又因?yàn)辄c(diǎn)到直線的距離, ,
.
(當(dāng)且僅當(dāng),即時(shí)取到最大值)
∴面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)若存在極值點(diǎn)1,求的值;
(2)若存在兩個(gè)不同的零點(diǎn),求證: (為自然對(duì)數(shù)的底數(shù), ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小王自主創(chuàng)業(yè),在鄉(xiāng)下承包了一塊耕地種植某種水果,每季投入2萬元,根據(jù)以往的經(jīng)驗(yàn),每季收獲的此種水果能全部售完,且水果的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量具有隨機(jī)性,互不影響,具體情況如表:
(Ⅰ)設(shè)表示在這塊地種植此水果一季的利潤(rùn),求的分布列及期望;
(Ⅱ)在銷售收入超過5萬元的情況下,利潤(rùn)超過5萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為梯形, , 平面, , , , 為中點(diǎn).
(1)求證:平面平面;
(2)線段上是否存在一點(diǎn),使平面?若有,請(qǐng)找出具體位置,并進(jìn)行證明:若無,請(qǐng)分析說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的空間幾何體中,底面四邊形為正方形, , ,平面平面, , , .
(1)求二面角的大;
(2)若在平面上存在點(diǎn),使得平面,試通過計(jì)算說明點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2013江蘇,理17】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,甲船在A處,乙船在A處的南偏東45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,應(yīng)沿什么方向,用多少h能盡快追上乙船?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.二進(jìn)制數(shù)11010(2)化為八進(jìn)制數(shù)為42(8)
B.若扇形圓心角為2弧度,且扇形弧所對(duì)的弦長(zhǎng)為2,則這個(gè)扇形的面積為
C.用秦九韶算法計(jì)算多項(xiàng)式f(x)=3x6+5x4+6x3﹣4x﹣5當(dāng)x=3時(shí)的值時(shí),v1=3v0+5=32
D.正切函數(shù)在定義域內(nèi)為單調(diào)增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù), 是函數(shù)的兩個(gè)零點(diǎn), 是函數(shù)的導(dǎo)函數(shù),證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com