【題目】已知△ABC的三個頂點A(4,﹣6),B(﹣4,0),C(﹣1,4),求:
(1)BC邊的垂直平分線EF的方程;
(2)AB邊的中線的方程.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)
已知f(x)=,x∈[1,+∞).
(1)當a=時,求函數(shù)f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)g(x)= +lnx在[1,+∞)上為增函數(shù),且θ∈(0,π),f(x)=mx﹣ ﹣lnx(m∈R).
(Ⅰ)求θ的值;
(Ⅱ)若f(x)﹣g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)設h(x)= ,若在[1,e]上至少存在一個x0 , 使得f(x0)﹣g(x0)>h(x0)成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+ asinC﹣b﹣c=0.
(1)求角A;
(2)若a=2,△ABC的面積為 ,求b,c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當年產(chǎn)量不足80千件時,C(x)= (萬元).當年產(chǎn)量不小于80千件時,C(x)=51x+ (萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,點P是平面A1BC1內(nèi)一動點,且滿足|PD|+|PB1|=6,則點P的軌跡所形成的圖形的面積是( )
A.2π
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)滿足(其中且).
(1)求函數(shù)的解析式,并判斷其奇偶性和單調(diào)性;
(2)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研小組研究發(fā)現(xiàn):一棵水果樹的產(chǎn)量(單位:百千克)與肥料費用(單位:百元)滿足如下關(guān)系: .此外,還需要投入其它成本(如施肥的人工費等)百元.已知這種水果的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水果樹獲得的利潤為(單位:百元).
(1)求的函數(shù)關(guān)系式;
當投入的肥料費用為多少時,該水果樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為一組合幾何體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD且PD=AD=2EC=2.
(I)求證:AC⊥平面PDB;
(II)求四棱錐B﹣CEPD的體積;
(III)求該組合體的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com