3.過點(diǎn)P(2,1)的直線l與函數(shù)f(x)=$\frac{2x+3}{2x-4}$的圖象交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=( 。
A.$\sqrt{5}$B.2$\sqrt{5}$C.5D.10

分析 f(x)=$\frac{2x+3}{2x-4}$=1+$\frac{\frac{7}{2}}{x-2}$,可得函數(shù)f(x)=$\frac{2x+3}{2x-4}$的圖象關(guān)于點(diǎn)P(2,1)對(duì)稱,過點(diǎn)P(2,1)的直線l與函數(shù)f(x)=$\frac{2x+3}{2x-4}$的圖象交于A,B兩點(diǎn),A,B兩點(diǎn)關(guān)于點(diǎn)P(2,1)對(duì)稱⇒$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=$\overrightarrow{OP}•(\overrightarrow{OA}+\overrightarrow{OB})=2{\overrightarrow{OP}}^{2}$即可.

解答 解:f(x)=$\frac{2x+3}{2x-4}$=1+$\frac{\frac{7}{2}}{x-2}$,
∴函數(shù)f(x)=$\frac{2x+3}{2x-4}$的圖象關(guān)于點(diǎn)P(2,1)對(duì)稱,
∴過點(diǎn)P(2,1)的直線l與函數(shù)f(x)=$\frac{2x+3}{2x-4}$的圖象交于A,B兩點(diǎn),
A,B兩點(diǎn)關(guān)于點(diǎn)P(2,1)對(duì)稱,∴$\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OP}$,
則$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=$\overrightarrow{OP}•(\overrightarrow{OA}+\overrightarrow{OB})=2{\overrightarrow{OP}}^{2}$,|$\overrightarrow{OP}$|=$\sqrt{{2}^{2}+1}=\sqrt{5}$,
∴則$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=2×5=10.
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的對(duì)稱性及向量的運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F1,F(xiàn)2分別是雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a,b>0)$的兩個(gè)焦點(diǎn),過其中一個(gè)焦點(diǎn)與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓內(nèi),則雙曲線離心率的取值范圍是(  )
A.(1,2)B.(2,+∞)C.$(1,\;\sqrt{2})$D.$(\sqrt{2},\;+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在數(shù)學(xué)課外活動(dòng)中,小明同學(xué)進(jìn)行了糖塊溶于水的實(shí)驗(yàn):將一塊質(zhì)量為7克的糖塊放入一定量的水中,測(cè)量不同時(shí)刻未溶解糖塊的質(zhì)量,得到若干組數(shù)據(jù),其中在第5分鐘末測(cè)得未溶解糖塊的質(zhì)量為3.5克.聯(lián)想到教科書中研究“物體冷卻”的問題,小明發(fā)現(xiàn)可以用指數(shù)型函數(shù)S=ae-kt(a,k是常數(shù))來描述以上糖塊的溶解過程,其中S(單位:克)代表t分鐘末未溶解糖塊的質(zhì)量.
(1)a=7;
(2)求k的值;
(3)設(shè)這個(gè)實(shí)驗(yàn)中t分鐘末已溶解的糖塊的質(zhì)量為M,請(qǐng)畫出M隨t變化的函數(shù)關(guān)系的草圖,并簡(jiǎn)要描述實(shí)驗(yàn)中糖塊的溶解過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓O:x2+y2=16及圓內(nèi)一點(diǎn)F(-3,0),過F任作一條弦AB.
(1)求△AOB面積的最大值及取得最大值時(shí)直線AB的方程;
(2)若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平方線,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x∈Z|x≥2},B={x|(x-1)(x-3)<0},則A∩B=( 。
A.B.{2}C.{2,3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.?dāng)?shù)列{an}中,an+2-2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求證:{an+1-an}是等差數(shù)列;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某校共有在職教師200人,其中高級(jí)教師20人,中級(jí)教師100人,初級(jí)教師80人,現(xiàn)采用分層抽樣抽取容量為50的樣本進(jìn)行職稱改革調(diào)研,則抽取的初級(jí)教師的人數(shù)為( 。
A.25B.20C.12D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a=$\sqrt{0.4}$,b=20.4,c=0.40.2,則a,b,c三者的大小關(guān)系是(  )
A.b>c>aB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow$=(4,2).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$的坐標(biāo);
(2)若$\overrightarrow{a}$-$\overrightarrow$與5$\overrightarrow{a}$+2$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案