精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,在四棱錐中, 平面的中點, 上的點且上的高.

(1)證明: 平面

2)若,求三棱錐的體積;

3)在線段上是否存在這樣一點,使得平面?若存在,說出點的位置.

【答案】(1)證明見解析;(2);(3中點.

【解析】試題分析:1平面 邊上的高, ,由線面垂直的判定定理能夠證明平面;(2)連接,中點,連接中點, , 平面, 平面,由根據棱錐的體積公式能夠求出三棱錐的體積;(3的中點,連接,則因為的中點,先證明,再證明以平面,可得, 重合時符合題意.

試題解析:(1,又平面平面,

平面

2的中點,到平面的距離等于點到平面距離的一半,即=,又因為,所以三棱錐;

3)取的中點,連接、,則因為的中點,所以,且,又因為,所以,所以四邊形是平行四邊形,所以,由(1)知平面,所以,又因為,所以,因為,所以平面,因為ED//DQ,所以MPB中點.

【方法點晴】本題主要考查線面垂直的判定定理及棱錐的體積公式,屬于難題.解答空間幾何體中垂直關系時,一般要根據已知條件把空間中的線線、線面、面面之間垂直關系進行轉化,轉化時要正確運用有關的定理,找出足夠的條件進行推理;證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質;(4)利用面面垂直的性質,當兩個平面垂直時,在一個平面內垂直于交線的直線垂直于另一個平面.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , , 的中點.

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,0<β< ,cos( +α)=﹣ ,sin( +β)= ,求sin(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱中,側面為矩形, , 的中點, 交于點,且平面.

(Ⅰ)證明:平面平面

(Ⅱ)若, 的重心為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正三棱錐,已知,

(1)求此三棱錐內切球的半徑.

(2)若是側面上一點,試在面上過點畫一條與棱垂直的線段,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當, 取一切非負實數時,若,求的范圍;

(2)若函數存在極大值,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖三棱柱中,側面為菱形,

(1)證明:

(2)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的單調增區(qū)間;
(2)若x∈[0,π]時,f(x)的值域是[5,8],求a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線,直線(其中)與曲線相交于、兩點.

Ⅰ)若,試判斷曲線的形狀.

Ⅱ)若,以線段、為鄰邊作平行四邊形,其中頂點在曲線上, 為坐標原點,求的取值范圍.

查看答案和解析>>

同步練習冊答案