(理)已知函數(shù)f(x)=x(ex-1)-ax2

(1)若a=,求f(x)的單調(diào)區(qū)間;

(2)若當(dāng)x≥0時,f(x)≥0,求a的取值范圍.

(文)已知函數(shù)f(x)=ex-1-ax.

(1)若a=1,求f(x)的單調(diào)區(qū)間;

(2)若當(dāng)x≥0時,f(x)≥0,求a的取值范圍.

答案:
解析:

   3分

  當(dāng)時,;當(dāng)時,;當(dāng)時,

  .故單調(diào)增加,在單調(diào)減少 6分

  (2)

  令,則

  若,則當(dāng)時,為增函數(shù),而,

  從而當(dāng)時,,即

  若,則當(dāng)時,為減函數(shù),而,

  從而當(dāng)時,,即,

  綜合得的取值范圍為

  (文)解:⑴時, 2分

  當(dāng)時,;當(dāng)時, 4分

  故上單調(diào)遞減,在上單調(diào)遞增. 6分

  (2)

  若,則當(dāng)時,為增函數(shù),又

  從而當(dāng)時, 9分

  若,則當(dāng)時,,為減函數(shù),又,

  從而當(dāng)時, 11分

  綜合得的取值范圍為. 12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=
sin2x-(a-4)(sinx-cosx)+a
的定義域?yàn)?span id="xjp9rj9" class="MathJye">{x|2kπ≤x≤2kπ+
π
2
,k∈Z},則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•普陀區(qū)三模)(理)已知函數(shù)f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
(2,2012)
(2,2012)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•普陀區(qū)三模)(理)已知函數(shù)f(x)=
ln(2-x2)|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)右圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè)Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時,an=4Tn+2,問是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案