已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)當(dāng)a>0時(shí),討論f(x)的單調(diào)性;
(3)若對任意的a∈(2,3),x1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求實(shí)數(shù)m的取值范圍。
(1)的極大值為,無極小值.(3)
解析試題分析:(1)求已知函數(shù)的極值,利用導(dǎo)數(shù)法,即求定義域,求導(dǎo),求導(dǎo)數(shù)為0與單調(diào)區(qū)間,判斷極值點(diǎn)求出極值. (2) 求定義域,求導(dǎo).利用數(shù)形結(jié)合思想討論導(dǎo)數(shù)(含參數(shù)二次不等式)的符號求f(x)的單調(diào)區(qū)間,討論二次含參數(shù)不等式注意按照定性(二次項(xiàng)系數(shù)是否為0),開口,判別式,兩根大小得順序依次進(jìn)行討論,進(jìn)而得到函數(shù)f(x)的單調(diào)性(注意單調(diào)區(qū)間為定義域的子集)(3)這是一個(gè)恒成立問題,只需要(m-ln3)a-2ln3>(|f(x1)-f(x2)|),故求解確定|f(x1)-f(x2)|最大值很關(guān)鍵,分析可以發(fā)現(xiàn)(|f(x1)-f(x2)|)=,故可以利用第二問單調(diào)性來求得函數(shù)的最值進(jìn)而得到(|f(x1)-f(x2)|). (m-ln3)a-2ln3>(|f(x1)-f(x2)|)對于任意的a∈(2, 3)恒成立,則也是一個(gè)恒成立問題,可以采用分離參數(shù)法就可以求的m的取值范圍.
試題解析:(1)當(dāng)時(shí),,由,解得 ,可知在上是增函數(shù),在上是減函數(shù).
∴的極大值為,無極小值.
①當(dāng)時(shí),在和上是增函數(shù),在上是減函數(shù);
②當(dāng)時(shí),在上是增函數(shù);
③當(dāng)時(shí),在和上是增函數(shù),在上是減函數(shù) 8分
(3)當(dāng)時(shí),由(2)可知在上是增函數(shù),
∴.
由對任意的a∈(2, 3),x1, x2∈[1, 3]恒成立,
∴
即對任意恒成立,
即對任意恒成立,由于當(dāng)時(shí),,∴.
考點(diǎn): 導(dǎo)數(shù) 恒成立問題 不等式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)且時(shí),證明:;
(2)若對,恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對任意的,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式其中為常數(shù)。己知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克。
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場每日銷售該商品所獲得的利潤最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),若函數(shù)在處與直線相切,
(1)求實(shí)數(shù),的值;(2)求函數(shù)上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于x的函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)a取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
據(jù)統(tǒng)計(jì)某種汽車的最高車速為120千米∕時(shí),在勻速行駛時(shí)每小時(shí)的耗油量(升)與行駛速度(千米∕時(shí))之間有如下函數(shù)關(guān)系:。已知甲、乙兩地相距100千米。
(1)若汽車以40千米∕時(shí)的速度勻速行駛,則從甲地到乙地需耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com