已知
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對(duì)任意的,恒有成立,求實(shí)數(shù)的取值范圍.

(1)極大值,極小值1;(2)參考解析;(3)

解析試題分析:(1)由已知,求函數(shù)導(dǎo)函數(shù),又.即可得到函數(shù)的極值點(diǎn),從而求得極值.
(2)當(dāng)時(shí), 的導(dǎo)數(shù)為零時(shí),得到兩個(gè)零點(diǎn).所以要討論的大小,從而確定函數(shù)的單調(diào)性.
(3)因?yàn)閷?duì)任意的,恒有成立.即求出的最大值.所以恒成立.再利用分離變量,即可得結(jié)論.
試題解析:(1)當(dāng)a=1時(shí)可知上是增函數(shù),在上是減函數(shù). 在 上是增函數(shù)
的極大值為的極小值.

①當(dāng)時(shí),上是增函數(shù),在上是減函數(shù)
②當(dāng)時(shí),上是增函數(shù);
③當(dāng)時(shí),上是增函數(shù),在上是減函數(shù)
(3)當(dāng)時(shí),由(2)可知上是增函數(shù),

對(duì)任意的a∈(2, 4),x­1, x2∈[1, 3]恒成立,

對(duì)任意恒成立,
對(duì)任意恒成立,
由于,∴.
考點(diǎn):1.函數(shù)的極值.2.函數(shù)的單調(diào)性.3.函數(shù)恒成立的問題.4.構(gòu)造新函數(shù)利用函數(shù)的最值解決恒成立的問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上是單調(diào)遞減函數(shù),
方程無實(shí)根,若“”為真,“”為假,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),().
(1)若有最值,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若存在、,使得曲線處的切線互相平行,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)若,求函數(shù)的極值點(diǎn);
(2)若在區(qū)間內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)當(dāng)a>0時(shí),討論f(x)的單調(diào)性;
(3)若對(duì)任意的a∈(2,3),x­1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x­2)|成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),若在區(qū)間上的最小值為-2,求的取值范圍;
(3)若對(duì)任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處切線為.
(1)求的解析式;
(2)設(shè),,,表示直線的斜率,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的最小值;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案