已知定義在R上的函數(shù)f(x)=的周期為,且對一切xR,都有f(x) ;

(1)求函數(shù)f(x)的表達(dá)式; 

(2)若g(x)=f(),求函數(shù)g(x)的單調(diào)增區(qū)間;

 

【答案】

(1)(2)

【解析】

試題分析:(1)∵,又周期 ∴

∵對一切xR,都有f(x) 

 解得: 

的解析式為

(2)

∴g(x)的增區(qū)間是函數(shù)y=sin的減區(qū)間 

∴由得g(x)的增區(qū)間為 

考點(diǎn):求三角函數(shù)解析式及單調(diào)區(qū)間

點(diǎn)評:在中函數(shù)最大值為,準(zhǔn)確理解中的條件:最大值為4,且在處取得最大值,在求的單調(diào)區(qū)間時首先將看做一個整體,在相應(yīng)的增減區(qū)間范圍內(nèi),進(jìn)而解關(guān)于x的不等式即可

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列條件:
①對任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時,f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊答案