【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出.若每輛車的月租金每增加50元,未租出的車將會(huì)增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定位3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定位多少元時(shí),租賃公司的月收益最大,最大月收益是多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)年級(jí)有16個(gè)班級(jí),每個(gè)班級(jí)學(xué)生從1到50號(hào)編排,為了交流學(xué)習(xí)經(jīng)驗(yàn),要求每班編號(hào)為14的同學(xué)留下進(jìn)行交流,這里運(yùn)用的是 ( )
A. 分層抽樣 B. 抽簽法 C. 系統(tǒng)抽樣 D. 隨機(jī)數(shù)表法
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且).
(1)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍;
(2)是否存在這樣的實(shí)數(shù),使得函數(shù)在區(qū)間上為減函數(shù),并且最大值為1?如果存在,試求出的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:
(Ⅰ)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(用同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值用代表);
(Ⅱ)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù),利用(i)的結(jié)果,求.
附:,若,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①若 (其中)是偶函數(shù), 則實(shí)數(shù);
②既是奇函數(shù)又是偶函數(shù);③若,當(dāng)
時(shí),,則;④已知是定義在上的不恒為零的函數(shù), 且對(duì)任意的
都滿足, 則是奇函數(shù)。其中所有正確命題的序號(hào)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答下列各題:
(1)在△ABC中,已知C=45°,A=60°,b=2,求此三角形最小邊的長及a與B的值;
(2)在△ABC中,已知A=30°,B=120°,b=5,求C及a與c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,在x=0處的切線與直線3x+y=0平行.
(1)求f(x)的解析式;
(2)已知點(diǎn)A(2,m),求過點(diǎn)A的曲線y=f(x)的切線條數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com