【題目】已知函數(shù)

1)求函數(shù)在區(qū)間上的最值;

2)若,且對(duì)任意恒成立,求的最大值(參考數(shù)據(jù):

【答案】1,;(2

【解析】

1)首先求出函數(shù)的導(dǎo)函數(shù),求出函數(shù)的單調(diào)性從而求得函數(shù)的最值;

2)依題意可得對(duì)任意恒成立,參變分離可得對(duì)任意恒成立.令利用導(dǎo)數(shù)說明其單調(diào)性,求出函數(shù)的最小值,即可求出參數(shù)的取值范圍;

解:(1的定義域?yàn)?/span>,

,

,得;令,得,

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

,,顯然

所以,

2)因?yàn)?/span>對(duì)任意恒成立,

所以對(duì)任意恒成立,

所以對(duì)任意恒成立.

,則

由于,所以上單調(diào)遞增.

,,

所以存在唯一的,使得,且當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞減,在上單調(diào)遞增.

所以

,即,所以

所以

因?yàn)?/span>,所以

又因?yàn)?/span>對(duì)任意恒成立,所以

,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,四邊形是梯形,//,四邊形是矩形,,,上的動(dòng)點(diǎn).

1)試確定點(diǎn)的位置,使//平面;

2)在(1)的條件下,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓的右頂點(diǎn)到直線的距離為3.

1)求橢圓的方程;

2)過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的面積的最大值(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,一動(dòng)圓與直線相切且與圓外切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)若經(jīng)過定點(diǎn)的直線與曲線交于兩點(diǎn), 是線段的中點(diǎn),過軸的平行線與曲線相交于點(diǎn),試問是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)組織“學(xué)習(xí)強(qiáng)國”的知識(shí)競(jìng)賽,從參加競(jìng)賽的市民中抽出40人,將其成績(jī)分成以下6組:第1,第2,第3,第4,第5,第6,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,34組中按分層抽樣抽取8人,則第2,34組抽取的人數(shù)依次為(

A.1,3,4B.23,3C.22,4D.1,1,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的右焦點(diǎn)、右頂點(diǎn)分別為F,A,過原點(diǎn)的直線與橢圓C交于點(diǎn)P、Q(點(diǎn)P在第一象限內(nèi)),連結(jié)PA,QF的面積是面積的3倍.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)已知M為線段PA的中點(diǎn),連結(jié)QA,QM

①求證:QF,M三點(diǎn)共線;

②記直線QPQM,QA的斜率分別為,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,平面,是棱上的一點(diǎn).

1)證明:平面平面

2)若,的中點(diǎn),,,且二面角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點(diǎn),曲線的參考方程為為參數(shù)).

(1)求曲線上的點(diǎn)到直線的距離的最大值與最小值;

(2)過點(diǎn)與直線平行的直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科研人員在對(duì)人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡(jiǎn)單隨機(jī)樣本數(shù)據(jù),如下表:

(年齡/歲)

26

27

39

41

49

53

56

58

60

61

(脂肪含量/%)

14.5

17.8

21.2

25.9

26.3

29.6

31.4

33.5

35.2

34.6

根據(jù)上表的數(shù)據(jù)得到如下的散點(diǎn)圖.

(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點(diǎn)圖:

(i)求

(i)計(jì)算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.

(2)若關(guān)于的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計(jì)年齡為50歲時(shí)人體的脂肪含量.

附:參考數(shù)據(jù):,,,,,

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為.

查看答案和解析>>

同步練習(xí)冊(cè)答案