12.求函數(shù)f(x)=$\sqrt{x+1}$的導(dǎo)函數(shù).

分析 根據(jù)導(dǎo)數(shù)的公式進(jìn)行計算.

解答 解:∵f(x)=$\sqrt{x+1}$,
∴f′(x)=$\frac{1}{2\sqrt{x+1}}$•(x+1)′=$\frac{1}{2\sqrt{x+1}}$.

點評 本題主要考查函數(shù)的導(dǎo)數(shù)的計算,根據(jù)復(fù)合函數(shù)的導(dǎo)數(shù)公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各組函數(shù)表示相等函數(shù)的是( 。
A.$f(x)=\left\{{\begin{array}{l}{x,x>0}\\{-x,x<0}\end{array}}\right.$與 g(x)=|x|B.f(x)=2x-1與 $g(x)=\frac{{2{x^2}-x}}{x}$
C.f(x)=|x-1|與 $g(t)=\sqrt{{{(t-1)}^2}}$D.$f(x)=\frac{x-1}{x-1}$與g(t)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}中${a_1}=2,{a_2}=1,{a_{n+2}}=\left\{\begin{array}{l}\frac{{2{a_{n+1}}}}{a_n},{a_{n+1}}≥2\\ \frac{4}{a_n},{a_{n+1}}<2\end{array}\right.(n∈{N^*}),{S_n}$是數(shù)列{an}的前n項和,則S2016=5241.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx-cos2x,求:
(1)它的最小正周期;
(2)它的最值;
(3)并指出在區(qū)間[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四邊形PABC中,PB⊥AC,AD=BD=1,AC=3,E是PC上一點,且PE:EC=1:2,現(xiàn)將△PAC沿AC進(jìn)行翻折,得到如圖②所示的三棱錐P-ABC.
(1)證明:DE∥平面PAB;
(2)證明:在翻折的過程中,總有平面PDB⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的點P到直線x-2y+7=0的距離最大時,點P的坐標(biāo)是(  )
A.(-$\sqrt{3}$,$\frac{\sqrt{3}}{2}$)B.($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)C.(-1,$\frac{3}{2}$)D.(1,-$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.雙曲線方程為x2-4y2=-36,則它的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{36}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=a-bcosx的最大值為$\frac{3}{2}$,最小值為$-\frac{1}{2}$,求實數(shù)y=-4bsinax的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點A(-2,y),B(4,9),且|$\overrightarrow{AB}$|=10,則y=1或17.

查看答案和解析>>

同步練習(xí)冊答案